
Competence checking for the global e-service
society using games

Kostas Stathis1, George Lekeas2, and Christos Kloukinas2

1 Department of Computer Science, Royal Holloway, University London, UK
kostas.stathis@cs.rhul.ac.uk

2 School of Informatics, The City University, London, UK
{g.k.lekeas,c.kloukinas}@soi.city.ac.uk

Abstract. We study the problem of checking the competence of com-
municative agents operating in a global society in order to receive and
offer electronic services. Such a society will be composed of local sub-
societies that will often be semi-open, viz., entrance of agents in a semi-
open society is conditional to specific admission criteria. Assuming that a
candidate agent provides an abstract description of their communicative
skills, we present a test that a controller agent could perform in order
to decide if a candidate agent should be admitted. We formulate this
test by revisiting an existing knowledge representation framework based
on games specified as extended logic programs. The resulting framework
finds useful application in complex and inter-operable web-services con-
strued as semi-open societies in support of the global vision known as
the Semantic Web.

1 Introduction

The vision of the Semantic Web [2] has resulted in a tremendous effort aiming
to build an open and distributed infrastructure of ubiquitous and semantic web-
services available to both humans and software entities alike. If this effort carries
on progressing with the current pace, it will only be a matter of time before
software components are in a position to choose from a huge variety of globally
available web-services when seeking to achieve their goals, just like humans. The
problem then will not be simply how to describe services, publish them, and
access them, but also how to organise them, compose them, and enact them,
so that any software component can use them in the most effective and flexible
manner.

To address the flexible organisation, composition and enactment of web-
services, the position of this paper is that current web-services will need to
be designed so that they will be part of actions mediated by software agents.
Put another way, agents can offer or receive a service by interacting with other
agents. Provided agents are a suitable abstraction for software components that
access or offer web-services, the position of this paper goes on further to argue
that artificial societies will act as a way of organising the complex interactions
involved in composite and heterogeneous services. In this context, agents can

offer or receive a service if they are members of an artificial society. The issue
then becomes how an agent can be a member of a society [19] and interact with
other member agents to receive or offer services.

For autonomous and heterogeneous interactions in artificial agent societies,
however, we cannot always assume that (a) we have access to the action-selection
strategy of the agent and (b) the protocols available in a society match perfectly
with the action-selection strategies of the member agents. In [4] we relaxed (a)
so that the action-selection strategy of the agent is kept private but the space of
communicative responses is made public [5]. In this way, the agent revealed only
the actions it could perform abstractly (e.g. query or refuse in Fig. 1), without
giving the conditions under which it would select these acts. Then to address
(b) we checked if an agent is competent, by checking that the agent is able to
reach specific states of the interaction (e.g. states s3 and s4 in Fig. 1).

s0 s1
i : query

p : inform

p : failure

p : not-understood

p : refuse

s3

s5

s4

s6

Fig. 1. A simple interaction protocol allowing an agent to query another about the
truth value of a proposition. The protocol starts at state s0 where the agent playing
the role of the initiator i asks a query, giving rise to state s1. From s1 the agent playing
the role of the participant p can then reply with: an inform, giving rise to final state s3;
a failure, giving rise to state s4; a refuse, giving rise to final state s5; or a not-understood,
giving rise to final state s6.

Competence as reachability allows us to check whether agents that wish to
join a society have the potential to terminate the interactions in which they would
potentially participate. However, in [4] we did not present the computational
part of the competence checking procedure but referred the reader to the games
framework in [16]. Here we extend [4] by linking the representation of competence
checking using games as the methodology to support the structuring of e-service
applications as artificial societies. We look at these issues by concentrating on
competence checking of e-services only, i.e. other related issues such as trust or
workflow management are beyond the scope of this work.

After this introduction, we discuss in Section 2 how to move from the current
web-service scenario to one where e-services are mediated by artificial societies,
including a social organisation stating how competent agents can become mem-
bers of societies. In Section 3 we illustrate how interactions in artificial societies
can be represented as gaming situations, by providing a concrete computational
framework specified in terms of extended logic programs that have a direct Pro-
log implementation. The resulting computational framework is then extended in
Section 4 where we show how to test competence of agents in interactions that
require time. Section 5 summarises our contributions, evaluates it, and discusses
related and future work.

2 Web-Services, Agents, and the Global E-service Society

2.1 From Web-Services to Agents

A large part of the Semantic Web effort is currently being directed to web-
services, software systems designed to support machine-to-machine interaction
over a network. One of the advantages of the approach is interoperability, i.e.,
applications written in various programming languages and running on various
platforms can use web-services to exchange data over the Internet in a way
similar to inter-process communication on a single computer.

Fig. 2. The diagram, taken from [21], shows how the public interface of a web-service
is described using WSDL (Web-Service Description Language). Other software compo-
nents interact with a web-service in a manner prescribed by its interface using messages,
which may be enclosed in a SOAP (Simple Object Access Protocol) envelope. Such mes-
sages are typically conveyed using HTTP, and normally comprise XML in conjunction
with other web-related standards. Discovery of a new web-service is achieved via the
use of UDDI (Universal Description, Discovery, and Integration) protocol.

Fig. 2 depicts the typical service provision context, where a service requester
identifies how to access a web-service by contacting a service broker, who holds

information about services and how these can be obtained from service providers.
One issue of Fig. 2 is that although conceptually the participating components
are being thought of as roles of artificial or human agents, the figure focuses on
the low-level implementation of the communication between parties, further re-
ducing it to web-based protocol standards for distributed programming. There is,
obviously, a conceptual gap between the low-level implementation of distributed
components and the high-level view of users for service providers/brokers, and
how these are to be organised as web-services proliferate day by day.

To fill the conceptual gap of Fig. 2 we use the notion of agents as the ex-
tra layer required for one or more web-services with related functionality to be
composed into more complex services. These more complex services will be as-
sociated with action descriptions that the agent will be capable to carry out,
either alone, or through communication with other agents. For example, in this
view, the web-service interfaces that relate to the functionality of a search engine
available from a provider, will be designed as the actions of a search agent that
is capable of indexing, searching, and presenting a set of documents as URIs.
Under this new view, a service requester agent will have to communicate with
a broker agent to find the search agent and subsequently ask for any suitable
services. Communication between interacting agents will be governed by com-
munication protocols [11] build on top of on an Agent Communication Language
(ACL) [14]; [6] presents a way of using ACL for agent-based web-services.

Unlike [6], however, we differentiate the logical (reasoning) part required for
the provision of a web-service and the use of low-level protocols such as UDDI
and WSDL by assuming that agents are build with a mind and a body. The mind
of the agent allows us to describe the logical reasoning the agent needs to do,
including the planning required to offer a complex service by composing basic
services. On the other hand, the body situates the mind in the distributed in-
frastructure of the Semantic Web. Through the body’s sensors and effectors the
different low-level protocols such as WSDL, UDDI, or SOAP will be used to exe-
cute actions and observe the environment. This kind of mind-body organisation
has already been tested successfully in [17], where the logical actions of agents
are translated into physical XML documents that are in turn communicated
using the P2P system JXTA [20].

2.2 Requirements for the Global E-service Society

Although agents provide a first-level of semantic organisation of a set of web-
services with related functionality, we argue that complex web-services can be
best organised at a second-level as artificial agent societies. Under this view we
will assume that there is a global society structured in terms of local sub-societies
as shown in Fig. 3. Although we imagine that an agent will belong to a sub-
society to start with, such an agent will often need to use the global society to
communicate with agents from other sub-societies. To communicate in the global
artificial society agents must be conversant in a global ACL, possibly different
to the local ACLs used in sub-societies. This choice of allowing different ACLs

is not intended to ignore standards, but simply acknowledges heterogeneity, if it
exists within an application.

The global society will be open in the sense of [12], while the local sub-
societies might be in addition semi-open as in [3]. Members of a local sub-
society will be individual agents acting as brokers, service requesters, and service
providers, amongst other. To access a web-service within a particular sub-society,
an agent must become a member if the sub-society is semi-open; we use semi-
open societies to model the proliferation of web-sites that require registration
for example. To join a sub-society we assume that candidate agents must reveal
their service needs. A candidate agent will also need to make public to the sub-
society it wishes to join the service abilities it can offer to the society. Service
abilities are required so that a society can check whether the candidate agent
can participate effectively in the service centric interactions within the society.

Controller

Broker

Arbitrator

Broker

Arbitrator
Arbitrator

Controller

SocietyN
(ACLG

): Match
es

SocietyK

(A
C
LK

):
M

at
ch

es

(A
C
LK

):
M

at
ch

Broker

(ACLG): Join

(ACLN): Accept

(ACLG): Reject

Global e-Service Society

(ACLG
): Match

Fig. 3. Agent joining a society

Once the agent is allowed in a sub-society, the agent is given a particular
social position, implying that the agent will be expected to play one or more roles
associated with that position. The roles of an agent condition its participation
in interaction protocols used in a society, thus regulating the interaction of the
agent while receiving or offering a service. According to the protocols available

in a society, we assume that a society will have a range of social positions on
offer, with certain agents occupying some of these positions already, according to
the way the society is organised. Apart from the usual positions encapsulating
the roles of Fig.2, we anticipate that to need (a) controller to approve/disprove
the entry of agents in a society and (b) an arbitrator to observe the interactions
between parties to enforce the social rules during the provision of a service.

The formal representation of a global society is beyond the scope of this
work. Our primary concern is to use this notion informally to contextualise the
knowledge representation framework that we propose in the next section. This
framework aims primarily to help with developing the functionality of controller
agents, although from existing work it addresses well known issues with the
development of arbitrators [16].

3 Competence checking using Games

Following earlier work on the games metaphor [18], we view communicative
interactions within an agent society abstractly as games [16]. In this view acts of
agents according to protocols are moves made by players of a, possibly, complex
game. We do not always look for a winner or a looser, but for the interaction to
reach situations with a result, as in dialogue games [15]. We are motivated by
communicative interactions that we envisage will play a role in web-services for
e-commerce applications, see Fig. 4.

We represent the rules of a game as an extended logic program written in
Prolog:

game(Situation, Result):-
terminating(Situation, Result).

game(Situation, Result):-
\+ terminating(Situation,_),
valid(Situation, Move),
effects(Situation, Move, NewSituation),
game(NewSituation, Result).

To formulate a particular game we need to decide how to represent a game sit-
uation, its initial and terminating states, how players make valid moves, and
how the effects of these moves change the current situation in to the next one
until the terminating state is reached. In defining these details we specify what
a controller agent needs to reason about how candidate agents can reach poten-
tially terminating situations, by exploring the effects of valid moves for a social
protocol. We will further extend this mechanism to plan for basic and complex
interactions, involving many agents, to check the competency of such agents.

3.1 Game Situations

We represent game situations by a data structure of the form:

m : order

s : re-order

s : confirm

s : refuse

m : withdraw

s : notify

m : accept

s0

s2

s1

s5

s3

s6

s4

Fig. 4. An agent in the role of a manufacturer m makes an order in s0, giving rise to
situation s1. From s1 an agent in the role of a supplier s can reply with: a confirm,
stating that the order must be confirmed by m, giving rise to state s2; a refuse, stating
that the order cannot be carried out, giving rise to final state s6; and a reorder, stating
that the order must be re-specified by m, returning to the initial state s0. If m is asked
to confirm in s2, then it may reply either with a withdraw, giving rise to final state
s3, or an accept, in which case the state s4 is reached. From s4 the supplier s needs to
notify agent m on the details of the transaction, giving rise to final state s5.

sit(Name, Id, Narrative).

This assumes that a game has a Name represented by a constant, a unique Id also
represented by a constant, and a Narrative of moves represented as a list. The
Narrative can be empty, in which case the term represents the initial situation
of a game. The term:

sit(order, s0, [])

can be thought of as representing the initial situation of the protocol depicted in
Fig. 4 represented as a game. Game situations change by players making moves.
The term:

select(Player, Action)

represents the fact that a Player has performed an Action as his move3.
To deal with what holds in the state of the game as a result of moves made

by players, we combine our formulation with the situation calculus [9] expressed
as an extended logic program:

holds(sit(Name, Id, []), F):- initially(sit(Name, Id, []), F).

3 For simplicity actions are taken to be ground. For examples we will use terms like
order rather than terms such as order(product("Nuts","15Kg","IRAN")).

holds(sit(Name, Id, [M | Ms]), F):- effect(F, M, sit(Name, Id, Ms)).
holds(sit(Id, [M | Ms]), F):-

holds(sit(Name, Id, Ms), F),
\+ abnormal(F, M, sit(Name, Id, Ms)).

Given this representation we need to express what holds initially, how effects of
moves introduce new fluents, and how fluents that may hold abnormally can be
excluded.

3.2 Initial and terminating states

Consider a game where a manufacturer p1 and a supplier p2 want to commu-
nicate according to the protocol shown in Fig. 4. These roles will need to be
specified when the game starts. Then the typical state of such a protocol will
need to hold the roles of the players using a role of/2 fluent. Another fluent
last move/1 will also be used to record the last move made. We can express the
initial state of this protocol as:

initially(sit(order, s0, []), role_of(p1, manufacturer)).
initially(sit(order, s0, []), role_of(p2, supplier)).

The absence of last move/1 from the initial situation allows our formulation
of the situation calculus to capture that this does not hold, using negation as
failure. Similarly, we can specify the terminating states of the protocol as:

terminating(Situation, Situation):-
Situation = sit(order, Id, N),
holds(Situation, last_move(select(P, Act))),
on(Act, [refuse, withdraw, notify]).

In other words, in this instance we return as the result the whole of the situation
term with all the moves selected so far.

3.3 Valid Moves

Differentiating between valid and invalid moves is of great importance in the
analysis of interactive systems as games [15]. For social interactions using agents
such as an auction this differentiation will allow the auctioneer to determine
which bids are valid and therefore, which bids are eligible for winning the auction
[1]. In our games framework, we represent valid moves as:

valid(S, Move):- available(S, Move), legal(S, Move).

Available moves are all the moves afforded by the state of a game. To represent
that order is an available move for the protocol of Fig.4 we write:

available(sit(order, Id, N), select(P, order)).

That is, all moves are available to all agents at any state. As selecting an available
move in a game does not always imply that this move is legal, we specify legal
moves separately. For example, to represent that it is legal to notify only after
an accept as in the protocol of Fig. 4, we write:

legal(sit(order, Id, N), select(P1, notify)):-
holds(sit(order, Id, N), last_move(select(P2, accept))),
holds(sit(order, Id, N), role_of(P, supplier)).

last move/1 is what helps the definition of legal moves to ensure that commu-
nicative acts are ordered as expected.

3.4 Representation of Effects

To represent the effects of a move on the game we distinguish between the effects
of that move on the term representing a game situation and how these effects are
brought about in the specific state represented by that situation. For example, to
represent the effects on the state of the situation we simply extend the narrative
of that situation with the move made:

effects(sit(Name, Id, Ms), Move, sit(Name, Id, [M | Ms])).

The effects of such a move on the state representing a situation are obtained
implicitly by the situation calculus effect and abnormality rules. To give an
example of these predicates we consider again the protocol of Fig. 4. We write:

effect(last_move(M), M, sit(order, Id, N)).

to represent that when we apply a move on the state, it becomes the last move
in the next situation. Note that with our formulation of the rules of a game we
do not need to check for the preconditions of a move, as we have checked before
the effects are carried out that the move is valid.

We also need to specify any abnormal situations where a fluent holds where
it should not. For the protocol of Fig. 4, the assertion:

abnormal(last_move(M_old), M_new, sit(order, Id, N)).

will ensure that after a new move has been made it is abnormal to consider that
the last move was the one made before.

3.5 Competence checking as planning

Given the formulation of games so far we have a way of describing all valid
situations that a set of agents can use according to the social rules of a protocol.
In [16] we have shown how such rules can be used by an umpire (arbitrator) that
checks conformance of the interactions or by a player who wants to play by the
rules. However, [16] did not consider competence. To augment the applicability
of the approach we view here competence checking as a particular instance of
planning using the rules of the game. We will use the following program to plan
according to the rules of a game:

plan(game(S, R), S, R):-
achieved(terminating(S, R), S, R).

plan(game(S, R), S, R):-
\+ terminating(S, _),
assume(valid(S, M), S, M),
apply(effects(S, M, NewS), S, M, NewS),
plan(game(NewS, R), NewS, R).

That is, to plan for a game we need to stop when a terminating state has been
achieved. Otherwise, in a non-terminating state, we need to assume a valid move,
apply the effects of this move to get a new state, and the carry on planning in
that new state.

We define achieved/3 and apply/4 simply by calling in Prolog the predicates
that they take as their first argument (as they are instantiated in the plan/3
program):

achieved(Terminating, Initial, Result):- call(Terminating).

apply(Effects, S, Move, NewS):- call(Effects).

To define assume/3, however, we need to rely on competence descriptions of
players, which correspond to what we referred to in section 2 as the service
abilities of agents. To represent such abilities for an agent we will assume rules
of the form:

competent(Agent, do(Situation, Act)):- Conditions.

A controller agent will need to keep rules of this kind to test the competence
of candidate agents. The controller must hold such models for all the members
in the society too. For example for the protocol of Fig. 4, consider the models
describing the competence of players p1 and p2:

competent(p1, do(sit(order, Id, N), order)).
competent(p1, do(sit(order, Id, N), accept)).

competent(p2, do(sit(order, Id, N), reorder)).
competent(p2, do(sit(order, Id, N), confirm)).
competent(p2, do(sit(order, Id, N), notify)).

We now define:

assume(Valid, Situation, select(Player, Act)):-
call(Valid),
competent(Player, do(Situation, Act)),
acceptable(Situation, select(Player, Act)).

While planning, this definition allow us to generate a valid move, check that the
agent is competent of performing it, and finally check that a move is accept-
able. The definition of acceptable/2 joins the assumed move with the rest of
the narrative describing the current situation to filter unwanted loops. For the
protocol of Fig. 4 such a loop is described by the sequence:

[select(A, order), select(B, reorder)]

which is allowed to be repeated only once. The implementation of acceptable
moves for this example is not included here as it trivially checks for specific
unwanted sub-lists of a list. We are now in a position to ask:

?- plan(Game, sit(order, s0, []), Result)

and get as part of the solution process all the valid states that can be planned for
using the description of the protocol and the descriptions of the competence for
individual players, with loops allowed only once, if they exist. What a controller
agent can then do with the results is application specific.

4 Competence checking in Timed Games

Combining our games framework with an extended logic programming formula-
tion of the situation calculus allowed us to specify protocol-based interactions
and test for reachability of all the states of the protocol via planning. However, in
many occasions social protocols do not assume strict turn-taking in that moves
of players can occur at the same time. An example of such a protocol is that of
an English auction, as shown in Fig. 5.

To allow for protocols of the kind describe in the above figure we introduce
timed games, that is, games whose moves have also a representation of the time
in which they happened.

4.1 Timed Games in the Event calculus

In trying to formulate timed games we introduce timed situations of the form:

sit(Name, Id, Time, Narrative).

One difference from our earlier representation is that now we need to keep the
current Time in the situation term. In addition, a narrative in timed games are
represented in terms of episodes, that is collections of moves that can validly
happen at the same time in a situation. We express episodes as:

at([select(Player1, Act1), ..., select(PlayerN, ActN)], T).

This representation implies that the term at(T, []) means that nothing hap-
pened at time T.

To reason about timed game situations, we use the simple version [13] of
the event calculus [7] instead of the situation calculus, suitably adapted for our
purposes as follows:

s1 s2
a:callforbids(p)

s3

b: (nobid1 and nobid2 and ... and nobidn)

b: (bid 1 or bid 2 or... or bid n)

[p < r] a: withdraw

[p > r] a: adjudicate

Legend: r = Reserve Price, p = Current Auction Price .

s0
a:openauction

s4

s5

Fig. 5. The English auction protocol allowing an agent with the role of an auctioneer
a and a set of agents with the role of bidder b to interact for the sale of a good. The
auctioneer starts the auction and the calls for bids at a specific price. One or more
bidders bid, in which case the auctioneer calls for new bids until no more bids are
offered. At that point the auctioneer either adjudicates the good to the highest bidder
or withdraws the good if the reserve price is not met.

holds(sit(N,Id,Tn,Nn), P):-
0 =< Tn,
initially(sit(N,Id,Ti,Ni), P),
\+ clipped(P, sit(N,Id,Ti,Ni), sit(N,Id,Tn,Nn)).

holds(sit(N,Id,Tn,Nn), P):-
happens(E, Ti, Ni, Nn),
Ti < Tn,
initiates(E, P, sit(N,Id,Ti,Ni)),
\+ clipped(P, sit(N,Id,Ti,Ni), sit(N,Id,Tn,Nn)).

clipped(P, sit(N,Id,Ti,Ni), sit(N,Id,Tn,Nn)):-
happens(Estar, Tj, Nj, Nn),
Ti < Tj, Tj < Tn,
terminates(Estar, P, sit(N,Id,Tj,Nj)).

The main difference from the normal formulation is that narratives are held as
lists in situation terms rather than as assertions in the knowledge base. For our
representation the definition of how an event happens need to be updated as:

happens(E, Tn, [at(En, Tn)|Sn], [at(En, Tn)|Sn]):-
member(E, En).

happens(E, Ti, [at(Ei,Ti)|Si], [at(En, Tn)|Sn]):-
happens(E, Ti, [at(Ei,Ti)|Si], Sn).

happens(at(En,Tn), Tn, [at(En,Tn)|Sn], [at(En, Tn)|Sn]).
happens(at(Ei,Ti), Ti, [at(Ei,Ti)|Si], [at(En, Tn)|Sn]):-

happens(at(Ei, Ti), Ti, [at(Ei,Ti)|Si], Sn).

The first two rules deal with individual events as in the simple event calculus,
with the difference that now we need additional parameters to keep the narrative
at intermediate times. Unlike the simple event calculus however, our formula-
tion also require additional rules (the last two) to deal with episodes that have
happened in the narrative; like the events they contain, they too can affect the
state of the game.

One implication of the use of episodes is that we need to change the way we
update the narrative in a timed game. We write:

effects(sit(N,Id,T,Es), at(Ms, T), sit(N,Id,NewT,[at(Ms,T)|Es])):-
T > 0, NewT is T + 1.

The above definition makes the assumption that new episodes last for one unit
of time. The rest of the generic representation for game remains the same, the
only parts that change are the domain specific details. We give an example next.

4.2 Formulating an English Auction

To exemplify timed games we present briefly parts of our formulation for an
auction as shown in Fig. 5. For simplicity, will assume that there are two bidders
and an auctioneer, and that in order to check the game we only need the last
set of moves captured in the fluent (last moves/1). We will represent the initial
state as before, but now we will need to also specify the initial time, which we
will assume it is 0. This gives rise to the initial state:

initially(sit(auction, s0,0,[]), role_of(p1, auctioneer)).
initially(sit(auction, s0,0,[]), role_of(p2, bidder)).
initially(sit(auction, s0,0,[]), role_of(p3, bidder)).

The terminating conditions are specified with holds axioms using the simple
version of the event calculus presented in the previous section. For example, to
define termination in the auction we write:

terminating(sit(auction,Id,T,N), sit(auction, Id, T, N)):-
holds(sit(auction,Id,T,N), last_moves([select(P,X)])),
member(X, [adjudicate,withdraw]).

The valid moves as specified as before, including available and legal moves, how-
ever these need to be specific to the moves of the auction. For example, to specify
a legal bid we write:

legal(sit(auction,Id,T,N), select(Player1, bid)):-
holds(sit(auction,Id,T,N),role_of(Player1,bidder)),
holds(sit(auction,Id,T,N),last_moves([select(Player2,cfp)])),
holds(sit(auction,Id,T,N),role_of(Player2,auctioneer)).

The only aspect that really changes is the representation of effects, which are
now expressed in terms of initiates/3 and terminates/3 instead of effect/3
and abnormal/3.

initiates(at(Es, T), last_moves(Es), sit(auction,Id,T,Ns)).

terminates(at(Es, T), last_moves(Old_M), sit(auction,Id,T,Ns)).

Notice that in this particular example initiates/3 and terminates/3 rules are
written only for episodes, however, in general, these need to be specified also for
individual events.

4.3 Competence checking of an English Auction

To check the competence of a set of players for timed games we are going to
assume, as before, that we have a set of statements regarding the competencies
of individual players and the plan/4 program. The main aspect that changes in
timed games, however, is that instead of generating individual moves we need
to generate individual episodes:

assume(Valid, Sit, at(Moves, T)):-
Sit = sit(N,Id,T, Es),
Valid = valid(Sit, select(P, M)),
findall(M, (call(Valid, competent(P, do(Sit, M))), All),
sublist(Moves, All),
acceptable(Sit, at(Moves, T)).

In other words, we need to change our definition of assume/3 to deal with
episodes, so that we get all the valid and acceptable subset of moves in the
protocol. Running the query:

?- plan(Game, sit(auction, s0, 1, []), Result)

we will be in a position to find all the reachable states of the protocol, according
to the description of the rules, and the competence of the players.

5 Concluding remarks

We have investigated the issue of competence checking for agents operating in a
global artificial society whose purpose is to organise complex services. Assuming
that a candidate agent provides an abstract description of their communicative
competence, we have formulated a test that a controller agent can perform to
decide if the candidate agent should join a sub-society of the global society. We
have formulated this test by revisiting an existing knowledge-based framework
based on games represented in extensive form. Although [19, 4, 8] has motivated
our framework, we have found no other related work that links agent competency
with artificial societies using games.

In evaluating our approach we see that our formulation can integrate the
situation and the event calculi according to the competence checking problem
at hand. In this context we inherit from our original formulation of games the

notion of compound games, viz., games built from active sub-games [15], thus
allowing quite complex interactions to be checked for competency. Also, by using
extended logic programs our approach can be implemented directly in Prolog,
unlike other approaches that need to extend the procedure e.g. agents based on
abduction [19]. Comparison with abductive approaches, however, is beyond the
scope of this paper.

The current formulation of games and, as a result, the competence checking
presented has the potential to build upon the methodology developed in [15].
One aspect of this is that it treats valid acts as an abstraction for different
specification approaches of social action, as they may be required by different
applications. We have for example assumed that valid acts must be available
and legal. Not all applications need to be presented in this way, however, see
[1] for a treatment of valid acts that relies on more complex concepts such as
those of obligation and permission. Investigation of these aspects will allow us to
compare our framework with existing approaches that model web-services other
than competence checking, e.g. see [10], but with an artificial societies approach.

By investigating how to best check the competency of agents in artificial soci-
eties for e-services we have identified the need to incorporate into our framework
a mechanism that ensures that agents are not simply competent according to
the acts of a protocol but also according to the expected order of acts described
in it. In parallel, we also need to deal with the re-computation introduced from
the use of event and situation calculi in more complex domains to the examples
used here. An immediate remedy will be to run our games framework on a Prolog
system that supports tabling, such XSB Prolog. Comparison of tabled execution
with approaches based on model checking is another direction that we wish to
investigate in this context.

Acknowledgements

The first author acknowledges partial support by the EU IST6 ArguGRID project.

References

1. A. Artikis, J. Pitt, and M. Sergot. Animated specifications of computational soci-
eties. In C. Castelfranchi and W. Lewis Johnson, editors, Proceedings of the First
International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS-2002), Part III, pages 1053–1061, Bologna, Italy, July 15–19 2002.

2. T. Burners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American,
284(5), May 2001.

3. P. Davidsson. Categories of artificial societies. In P. Petta A. Omicini and R. Tolks-
dorf, editors, Engineering Societies in the Agents World II, pages 1–9, Prague,
Czech Republic, 2001.

4. U. Endriss, W. Lue, N. Maudet, and K. Stathis. Competent agents and customising
protocols. In A. Omicini, P. Petta, and J. Pitt, editors, Proceedings of the 4th
International Workshop Engineering Societies in the Agent World (ESAW-2003),
volume 3071 of Lecture Notes in Artificial Intelligence (LNAI), pages 168–181.
Springer-Verlag, 2004.

5. U. Endriss, N. Maudet, F. Sadri, and F. Toni. Protocol conformance for logic-
based agents. In G. Gottlob and T. Walsh, editors, Proceedings of the Eighteenth
International Joint Conference on Artificial Intelligence, Acapulco, Mexico (IJCAI-
03). Morgan Kaufmann Publishers, August 2003.

6. R. Kowalczyk J. Yan, Y. Yang and X. T. Nguyen. A service workflow management
framework based on peer-to-peer and agent technologies. In Proc. of International
Workshop on Grid and Peer-to-Peer based Workflows, Melbourne, Australia, Sep.
2005.

7. R. A. Kowalski and M. Sergot. A logic-based calculus of events. New Generation
Computing, 4(1):67–95, 1986.

8. G. K. Lekeas and K. Stathis. Agents acquiring Resources through Social Positions:
An Activity-based Approach. In Proceedings of the 1st International Workshop on
Socio-Cognitive Grids, Santorini, Greece, June 2003.

9. J. McCarthy and P. Hayes. Some philosophical problems from the standpoint of
artificial intelligence. In B. Meltzer and D. Michie, editors, Machine Intelligence
4, pages 463–502. American Elsevier, New York, 1969.

10. S. McIlraith, T. Cao Son, and H. Zeng. Semantic web services. IEEE Intelligent
Systems, 16(2):46–53, 2001.

11. J. Pitt and A. Mamdani. A Protocol-based Semantics for an Agent Communi-
cation Language. In Proceedings of the Sixteenth International Joint Conference
on Artificial Intelligence, Stockholm, Sweden (IJCAI-99), pages 486–491. Morgan
Kaufmann Publishers, 1999.

12. J. V. Pitt. The open agent society as a platform for the user-friendly information
society. AI & Society, 19(2):123–158, 2005.

13. M. Shanahan. The event calculus explained. In M.Veloso M.J.Wooldridge, editor,
Lecture Notes in Artificial Intelligence, pages 409–30. Springer, 1999.

14. M. P. Singh. Agent communication languages: Rethinking the principles. In Com-
munication in Multiagent Systems, pages 37–50, 2003.

15. K. Stathis. Game–Based Development of Interactive Systems. PhD thesis, Depart-
ment of Computing, Imperial College London, Nov 1996.

16. K. Stathis. A Game-based Architecture for developing Interactive Components in
Computational Logic. Functional and Logic Programming, Special Issue on Logical
Formalisms for Program Composition, 2000(1), March 2000.

17. K. Stathis, A. Kakas, W. Lu, N. Demetriou, U. Endriss, and A. Bracciali.
PROSOCS: a platform for programming software agents in computational logic. In
J. Müller and P. Petta, editors, Proceedings of the Fourth International Symposium
“From Agent Theory to Agent Implementation”, Vienna, Austria, April 13-16 2004.

18. K. Stathis and M. J. Sergot. Games as a Metaphor for Interactive Systems. In
M. A. Sasse, R.J. Cunningham, and R. L. Winder, editors, People and Computers
XI (Proceedings of HCI’96), BCS Conference Series, pages 19–33, London, UK,
August 1996. Springer-Verlag.

19. F. Toni and K. Stathis. Access-as-you-need: a computational logic framework
for flexible resource access in artificial societies. In Proceedings of the Third In-
ternational Workshop on Engineering Societies in the Agents World (ESAW’02),
Lecture Notes in Artificial Intelligence. Springer-Verlag, 2002.

20. B. Traversat, M. Abdelaziz, D. Doolin, M. Duigou, J. C. Hugly, and E. Pouyoul.
Project JXTA-C:Enabling a Web of Things. In Proceedings of the 36th Hawaii
International Conference on System Sciences (HICSS’03), pages 282–287. IEEE
Press, January 2003.

21. Web-services. Home Page: http://en.wikipedia.org/wiki/Web services.

