
The Need to Revisit Architectural Connectors

Christos Kloukinas ∗

Dep. of Computing, City University, London, EC1V 0HB, U.K.

Tel: +44.20.7040.8848 Email: C.Kloukinas@soi.city.ac.uk

Abstract

Composing and analysing COTS-based critical systems depends on
a great degree on the interaction patterns among the components and
the strategies used by them to guarantee that the overall temporal,
security and dependability requirements will be met. However, the el-
ement which naturally describes this system aspect - an architectural
connector - is being continuously mistreated and underemployed. We
believe that the notion of connectors needs to be revisited and we
should built upon it, if we want to be able to faithfully describe com-
plex critical systems in a manner which easily allows to identify the
design problems and opportunities available to us for meeting the sys-
tem requirements.

1 Introduction

Architectural connectors were quite a contentious subject in the software
architecture community, with some questioning their very existence, choosing
to represent them with special component types, if at all. Allen & Garlan [1]
formalised the notion of a connector and identified as the most important
property of checking whether a component port process p is compatible with
some connector role r to be that p should refine r and ensure that“p must
respect all of r’s obligations to interact with its environment”. This in short
means that the port of a component (and therefore the component itself)
must have a strategy for the game described by the role of the connector it is

∗Partially funded by the EU project SERENITY FP6-IST-2006-27587.

1

C.Kloukinas@soi.city.ac.uk


assuming. Thus, a component cannot block its environment by refusing its
inputs but if it considers some inputs to be undesirable then it must ensure
that they become impossible by using an appropriate game strategy.

2 Gains from the correct use of connectors

The strategies of components can be used to represent most naturally notions
such as scheduling constraints for temporal constraints - where the interaction
described by the connector is between a system component and resource
components - or for security and dependability constraints - where one needs
to ensure that for each move the environment performs in the game against
the system, the system can respond with one which will keep it in the set of
safe states. Unfortunately, the languages currently being used and proposed
for describing systems, such as UML [5] or AADL 1 [4], have only a very
limited notion of connectors and fail to use them as the basis for the analysis
that is needed to increase our confidence in a system. This leads to an
unnecessarily complex description of systems, where the different notions
and ways of controlling them are hidden and their analysis is performed in
an ad-hoc manner.

We believe that in order to manage to successfully describe and manage
the complex interactions among the different system components, either via
explicit connectors such as RPC and pipes (or more complex protocols such
as leader election, auctions, etc.) or via implicit connectors such as resource
usage and other indirect channels (tempest phenomenon), we will need to
bring the notion of connectors back into the centre stage and start treat-
ing them as first-class entities, just as important as the components them-
selves. Along with the reintroduction of a full connector model, our models
of components will need to change so as to present in an explicit manner
the strategies which are employed by them for the specific systems they are
parts of. If we are to increase our confidence in the strategies employed by
the system components, then these need to be as modular as possible. That
is, they need to be broken down with respect to the different system modes
and, if possible, they should be broken down with respect to each property
that should hold for each mode, e.g., similarly to the scheduler stack of [3] or
the controllers of [2]. We believe that such an approach would greatly help in
de-obfuscating designs and in representing design decisions in a much more
obvious manner than what is currently possible. In this way, designers will
no longer have to entangle the strategies and the design decisions within the

1By the Avionics Systems Division of the Int. Soc. of Automotive Engineers.

2



behavioural descriptions of the system components, as they do nowadays be-
cause they have access only to simple connectors. This would make it easier
to understand the dynamics of a system and of the strategies employed in it,
make further optimisations easier to identify and render the whole system
easier to validate.

3 Conclusions

The description, design and analysis of complex systems requires an easy
way to describe at a high level the complicated interaction protocols that are
being used in them, either explicitly or implicitly. Protocols are most natu-
rally described by architectural connectors which currently are being either
completely ignored or only supported at a very rudimentary level, making
it almost impossible to describe cleanly something more complex than the
usual RPC or simple message passing. By bringing connectors back into the
picture, we can easily represent the particular interaction patterns and de-
sign constraints used in a system, through a more unified concept which will
effectively be the strategies that the system components are employing in
the protocols they are participating. By structuring these strategies accord-
ing to the system modes and the required properties, we can help in making
complex systems easier to design, understand, optimise and validate.

References

[1] R. Allen and D. Garlan. A formal basis for architectural connection. ACM
Trans. on Softw. Eng. and Methodology, 6(3):213–249, July 1997.

[2] I. J. Hayes, M. A. Jackson, and C. B. Jones. Determining the specification of
a control system from that of its environment. In FME 2003, volume 2805 of
LNCS, pages 154–169, Pisa, Italy, Sept. 2003. Springer.

[3] C. Kloukinas and S. Yovine. Synthesis of safe, QoS extendible, application
specific schedulers for heterogeneous real-time systems. In ECRTS 2003, pages
287–294, July 2003. DOI: 10.1109/EMRTS.2003.1212754 .

[4] B. A. Lewis, P. H. Feiler, and S. Vestal. The SAE architecture analysis & design
language (AADL): A standard for engineering performance critical systems. In
2006 IEEE Int. Symp. on Intelligent Control, pages 1206–1211, Oct. 2006. See
also: http://www.aadl.info.

[5] OMG. Unified modeling language: Superstructure, version 2.1.1. Available at
http://www.omg.org/uml/ - file formal/2007-02-05, Feb. 2007.

3

10.1109/EMRTS.2003.1212754
http://www.aadl.info
http://www.omg.org/uml/

	Introduction
	Gains from the correct use of connectors
	Conclusions

