

A4.D3.3 – V2 of Dynamic Validation Prototype
K. Mahbub, G. Spanoudakis, C. Kloukinas

Document Number A4.D3.3

Document Title V2 of Dynamic Validation Prototype

Version 1.0

Status Final

Work Package WP 4.3

Deliverable Type Prototype

Contractual Date of Delivery 30 June 2007

Actual Date of Delivery 10 September 2007

Responsible Unit CUL

Contributors CUL

Keyword List S&D Monitoring Tool

Dissemination level PU

A4.D3.3 – V2 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.0 Page 2 of 31

Change History

Version Date Status Author (Unit) Description

0.1 20/7/2007 Draft K. Mahbub (CUL) Table of contents, indicative
section contents

0.2 25/7/2007 Draft C. Kloukinas (CUL) New TOC, Sections 2 & 4

0.3 31/7/2007 Draft K. Mahbub (CUL) Section 3.2, 4

0.4 10/8/2007 Draft G. Spanoudakis (CUL) Editing, Algorithm
Specification, Examples,
Change of TOC

0.5 15/8/2007 Draft for
Quality
Approval

G. Spanoudakis (CUL) Final version submitted for
quality approval

1.0 9/9/2007 Final G. Spanoudakis (CUL) Final version

A4.D3.3 – V2 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.0 Page 3 of 31

Executive Summary

This report is part of the deliverable A3.D3.3 and provides a description of the second version of
the Dynamic Validation Prototype that has been developed in SERENITY. The code that
implements the 2nd version of this prototype is also part of A3.D3.3. The report describes the
extensions of the first version of the Dynamic Validation Prototype which has been implemented in
version 2, and other amendments of the original prototype that were implemented in the second
version.

In summary, the implemented extensions enable the monitoring of rules which refer to events that
have been captured by event collectors running on different machines from the monitoring engine
and, possibly, from each other. The main problem with such events is that they do not have
comparable timestamps. To overcome this problem, the second version of the prototype provides a
framework for synchronising the clocks of the machines where events are captured with the clock
of the monitor and implements a new version of the monitoring algorithm which takes into account
possible delays in the transmission of events over a network before applying the principle of
negation as failure in order to decide about the truth value of a predicate in a formula. Furthermore,
the new version of the prototype incorporates a garbage collector which deletes events from the
event memory of the prototype when these events can no longer be needed for the reasoning process
that is implemented by the monitor.

Other changes that have been implemented in the second version of the dynamic validation
prototype are related to pruning of monitoring formula templates during the monitoring process.
Possible cases of pruning were identified during the implementation of the initial version of DVP
and their implementation led to significant improvements in performance.

A4.D3.3 – V2 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.0 Page 4 of 31

Table of Contents

1. Introduction ... 5

2. Overview of DVPv1 .. 6

3. DVPv2... 8

3.1. Overview of extensions... 8

3.2. Handling events captured by distributed event collectors... 8

3.2.1. Extension for Synchronisation of Collector and Monitor Clocks 9

3.2.2. Extensions to the Monitor Engine .. 10

3.2.2.1 Estimation of Upper Time-To-Live Event Bound.. 12

3.2.3. Optimization of the Monitoring Process by Template Pruning 18

3.3. Other Limitations.. 19

3.3.1. Support for Future-Time HoldsAt Predicates ... 19

3.3.2. Lack of Multiple Inheritance.. 19

3.3.3. Support for Logical Clocks .. 20

3.3.4. Support for Non-Determinism.. 20

3.3.5. Support for a Full Object-Oriented Database.. 20

3.3.6. Minimisation of Past-Time Predicates in the DB.. 20

3.3.7. Calling External Functions... 21

3.3.8. Supporting Internal Alarms.. 21

3.4. Future Work ... 21

4. Installation and Usage Guide.. 22

4.1. Required Software .. 22

4.2. Installation.. 22

4.3. How to Use the Prototype ... 22

4.3.1. The Data Analyzer ... 22

4.3.2. The Monitoring Manager ... 22

4.4. Example of Using the DVP Together With multiple Event Collectors 28

5. Conclusion... 30

A4.D3.3 – V2 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.0 Page 5 of 31

1. Introduction
This report is part of the SERENITY A4.D3.3 deliverable and its purpose is to describe the
implementation of the 2nd version of the dynamic validation prototype of SERENITY and give
guidelines on how to install and use it. In addition to this report, A4.D3.13 includes:

 the source code of the 2nd version of the dynamic validation prototype of SERENITY

 Example specifications of security and dependability properties that can be monitored using
this prototype.

 Mock up implementations of systems that could be monitored using the formulae provided
in (2).

 A set of event collectors1 that need to be installed in order to generate the events required
for monitoring the formulae described in (2).

The second version of the dynamic validation prototype, shortly referred to as DVPv2 in the rest of
this document, extends the first version of the prototype by introducing mechanisms that enable
monitoring in the presence of events which are captured by distributed event collectors and
transmitted to the monitor over a network. It also introduces some optimisations related to the
pruning of monitoring formula templates during the reasoning process. These extensions were all
necessary in order to widen the monitoring capability of the prototype and improve its performance.

The rest of this report is structured as follows. In Section 2, we describe the general architecture and
functionality of the core monitoring engine upon which the development of DVPv1 has been based.
In Section 3, we describe the extensions that we have introduced to this engine as part of the
implementation of DVPv2, provide an overview of limitations of the first implementation of DVP
and the actions that were taken to address them (if any) as part of DVPv2, and outline plans for
future work on it. In Section 4, we provide guidelines for the installation and use of DVPv2.
Finally, in Section 5, we provide some concluding remarks for DVPv2.

1 In this report, we use the terms “event collector” and “data collector” interchangeably to refer to the
components that capture the runtime events (data) used by the monitor.

A4.D3.3 – V2 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.0 Page 6 of 31

2. Overview of DVPv1
DVPv1 has been developed in order to provide support for:

 The communication with the event collectors that we have developed in SERENITY for
observing events from different types of systems and the structure that they use to represent
and communicate these events (see deliverable A4.D2.2 [4])

 The use of object variables in EC-Assertion formulae.

 The use of arbitrary relations between objects of complex types (or parts of such objects) as
fluents.

 The monitoring of past-time EC-Assertion formulae.

 Reasoning about the truth value of HoldsAt predicates in EC-Assertion formulae.

The above extensions were necessary in order to make the original monitoring environment capable
of monitoring: (i) the operations of generic software systems as opposed to service based systems
only that the original environment was able to monitor, and (ii) basic security and dependability
properties such as confidentiality and integrity which as we show in [9] can be expressed by past-
time EC-Assertion formulae (see also [1] for a summary of EC-Assertion).

The architecture of DVPv1 is illustrated in Figure 1. As shown in the figure, this environment
consists of a monitoring manager, an event collector, a monitor, an event database, a deviation
database and a monitoring console.

The monitoring manager is the component that has responsibility for initiating, coordinating and
reporting the results of the monitoring process. Once it receives a request for starting a monitoring
activity, it checks whether it is possible to monitor the requested properties and, if it can, it starts an
event collector to capture events from the system to be monitored and passes to it the events that
should be collected. It also sends to the monitor the formulae to be checked.

The event collector polls the event port of the system to be monitored to get the stream of events
sent to this port. After receiving an event, the event collector identifies its type and, if it is relevant
to the properties which are being monitored, it sends it to the event buffer. All the events which are
not relevant to the monitoring of the requested formulae or the assumptions which are used in order
to derive information are ignored. The event buffer is a subcomponent of the monitor manager
because the event collector is no longer limited to receiving events just web services. Instead, the
event collector in SERENITY can receive events from more general types of systems via TCP/IP
sockets as well as from web services.

The monitor retrieves the events which are recorded in the event buffer during the operation of the
system that is being monitored in the order of their occurrence, derives other possible events that
may have happened without being recorded (based on assumptions set for the system), and checks
if the recorded and derived events are compliant with the properties being monitored. In cases
where the recorded and derived events are not consistent with properties being monitored, the
monitor records the deviation in a deviation database. The monitoring manager polls the deviation
database of the framework at regular time intervals to check if there have been any deviations
detected with respect to the given set of properties and reports them to the monitoring console of the
environment.

A4.D3.3 – V2 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.0 Page 7 of 31

Finally, the environment incorporates a monitoring console that gives access to the monitoring
service to human users. The console incorporates a deviation viewer that displays the deviations
from the monitored properties. It also supports the selection of the properties to be monitored from
sets of properties that have been predefined in EC-Assertion, enables the user to suspend and re-
initiate monitoring, and gives access to the entire set of events that have been recorded during the
operation of the system that is being monitored.

Figure 1 also shows some of the internal components of the monitor. The Native Type Generator
(NTG) is a component that receives the events in XML (as a string) and creates Java objects for the
event and its elements (e.g. operation parameters, source, receiver, etc.) which can then be used by
the monitor to perform the checking (via unification). There are also two in-memory databases that
are used for checking past-time formulae and for supporting the evaluation of the HoldsAt
predicate: Database I that keeps a record of the past-time events; and Database II that keeps a
record of any Initiates and Terminates predicates.

Monitor

Deviation Database Handler

Event Collector

Monitor Manager

Monitoring
Console

IMonitor

Manager

Execution Environment

Deviation Port

Deviation Port

Event Port

A Key: B
A exposes the interface I, and B uses the
interface I

C
A B A writes to port C that B listens to

I

C

Event Buffer

IMonitor

IDeviationDBHandler

NTG
Database I

Database II

Buffer Port

NTG Port

 Figure 1 – Architecture of DVPv1

A4.D3.3 – V2 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.0 Page 8 of 31

3. DVPv2

3.1. Overview of extensions
In summary, the implemented extensions enable the monitoring of rules which refer to events that
have been captured by event collectors running on different machines from the monitoring engine
and, possibly, from each other. The main problem with such events is that they do not have
comparable timestamps. To overcome this problem, the second version of the prototype provides a
framework for synchronising the clocks of the machines where events are captured with the clock
of the monitor and implements a new version of the monitoring algorithm which deals with the
possibility of getting events not in the order that they have been produced. Furthermore, the new
version of the prototype incorporates a garbage collector which deletes events from the event
memory of the prototype when these events can no longer be needed for the reasoning process that
is implemented by the monitor.

Other changes in the second version of the dynamic validation prototype are related to pruning of
monitoring formula templates during the monitoring process. Possible cases of pruning were
identified during the implementation of the initial version of DVP and their implementation led to
significant improvements in performance.

3.2. Handling events captured by distributed event collectors
In Serenity, monitoring may be based on events which are captured from event collectors attached
to components that implement security solutions (aka “implementations” in [6]) or other
functionality which may be running on different machines. This creates a problem as the
timestamps of events captured from distributed sources are generated by different system clocks
which are not synchronised and, as a result, they might not be directly comparable. Thus, a
transformation of the time stamps of the different events onto a common timeline is necessary in
order to enable a sound checking of the time conditions that are expressed in monitoring rules. As
an example consider the following monitoring rule:

Rule 1:

∀ _eID1,_ercID,_docEhtID,_request:String; _patInfo: MedicalRecord; t1,t2:Time

Happens(e(_eID1,_ercID,_docEhtID,RES-B,
 fetchPatientData(_docID,_request,_patInfo),_ercID), t1, ℜ(t1,t1)) �

Happens(e(_eID2,_ercID,_ttpasID, RES-A,

 verifyDoctor(_docID,_request,_verified), _ttpasID), t2, ℜ(t2,t1))

 ∧ (_verified == True)

This rule can be used to monitor the following confidentiality requirement that has been identified
in [2]:

“A patient’s substitute doctor can access the patient’s medical data if and only if
he is the selected doctor” (i.e., Req. 2.2.1.7 in [2])

A4.D3.3 – V2 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.0 Page 9 of 31

The rule is relevant to the smart items scenario of SERENITY and specifies that before the
emergency response centre (_ercID) responds to an invocation of the operation fetchPatientData
which is invoked by the e-health terminal of a doctor (_docEhtID) to retrieve the medical record
of a patient (_patInfo), it must have called the operation verifyDoctor in trusted third party that
provides a doctor authentication service (_ttpasID) and received a positive verification of the
identifier of the enquiring doctor (_docID).2 The rule expresses this condition by stating that the
timestamp t2 of the event e(_eID2,_ercID,_TTP,RES-
A,verifyDoctor(_docID,_request,_verified), _TTPAS) must be less than the
timestamp t1 of the event that indicates the response to the fetchPatientData invocation. As in this
case, however, t1 refers to the time of emergency response centre and t2 refers to the time of the
trusted authentication service the two values are not directly comparable unless the time difference
between the clocks of the machines where these two components of the system run is known.
Furthermore, since the relevant events may have been transmitted to the monitor over different
networks with different communication delays it is also uncertain how soon after the occurrence of
the events at their sources the monitor will receive them.

To deal with such cases it was necessary to extend:

 event collectors in order to enable a synchronisation of their clocks and ensure that the
timestamps of the events that they generate are expressed on the same timeline and

 the monitoring engine in order to ensure that it considers the events which are required by
the rules even if they arrive well after they occur and not in the order of their occurrence at
source.

In the following, we describe the above extensions.

3.2.1. Extension for Synchronisation of Collector and Monitor Clocks
To enable the synchronisation of event timestamps, we have extended event collectors and the
monitor with components that realise the Network Time Protocol (NTP) [7]. The implementation of
this protocol in DVPv2 allows event collectors to compute the difference of their clocks with the
monitor clock at regular intervals. This difference is used to transform timestamps taken according
to the clock of each collector to timestamps that express time in terms of the monitor’s clock. This
is achieved by implementing an NTP client at each event collector and an NTP server at the
machine that hosts the monitoring manager and monitor, as shown in Figure 2. NTP clients attached
to the collectors are calling the NTP server at regular intervals to synchronize their clocks with the
clock of server at a regular intervals.

More specifically, an NTP client synchronizes its clock with an NTP server’s clock by exchanging several
packets with that server. The NTP client stores its own time stamp in each packet that it sends to the server.
When the server receives the packet, it will store its own timestamp and a transmit timestamp in it and sends
it back to the client. Upon the receipt of the reply packet from the server, the client logs the receipt time of
the packet in order to estimate its travelling time. The NTP client uses these time differences to estimate the
time offset between both machines, as well as the standard deviation of the time difference.

In our solution we assume that the machine hosting the monitor and the monitoring manager is
running an NTP server. Most of the operating systems, including Windows and Linux, incorporate

2 This rule is a simplification of a similar rule that we specified in [9] that does not use assumptions and
fluents.

A4.D3.3 – V2 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.0 Page 10 of 31

built in NTP servers/daemons as part of time services3. Our implementation is based on Windows
and, therefore, accesses the NTP server of the Windows time service. The NTP client has been
implemented in Java.

Figure 2 – Event Serialization Architecture in DVPv2

3.2.2. Extensions to the Monitor Engine
The extension of event collectors and the monitor engine which computes the difference of the
clock of each collector with respect to the monitor clock enables the ordering the different events
according to their timestamps but it does not solve the second problem that we pointed out above,
that is the problem which arises from the fact that even if events have timestamps expressed in a
single timeline they may arrive out-of-order, since the communication channels linking each
collector with the monitor introduce different delays. Thus, the monitor needs to ensure that the rule
inferences it performs are correct and the out-of-order arrival of events does not cause any false
positive or true negative identifications of rule violations.

As an example of this problem consider the following monitoring rule:

Rule-2:

∀ t1, t2: Time

Happens(e1, t1, ℜ(t1,t1)) �

Happens(e2, t2, ℜ(t1+1, t1+5))

In the case of this rule, it is possible that the monitor receives first an e2 event and subsequently an
e1 event although the two events were produced with timestamps that would make it possible to
unify them with the rule and check if the rule is satisfied (e.g. e1 at T=10 and e2 at T=14). The
arrival of e2 prior of e1 makes it complex to unify it with Rule-2 since the rule constraints e2 to
occur with a certain time window after the occurrence of e1 (i.e. between 1 and 5 time units after
the occurrence of e1).

3 Open source NTP servers can be downloaded from: www.ntp.org.

Monitor Monitoring
Manager

NTP Server
Event Collector 1

Event Collector n

.

.

.

NTP Client

NTP Client

A4.D3.3 – V2 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.0 Page 11 of 31

One possible solution for this problem would be to serialise all events before passing them to the
monitor. In this approach

 an Event Serialzer inside the monitoring manager (see Figure 2) stores the maximum
channel delay (maxCDi) for each event collector DCi

 If the Event Serializer receives an event Ei from DCi the Event Serializer determines the
processing time Tpi (i.e., the time point when the event should be dispatched to the monitor)
using the following formula,

Tp
i = Ti + max(maxCDi) - maxCDi, Where Ti is the time stamp of the event Ei.

In the case of the above rule for example, if the event serialiser knows that the maximum
transmission delay of the channel that transmits e1 is 4 and the maximum transmission delay of the
channel that transmits e2 is 2, it could determine the processing time of e2 as 16 as beyond that time
point no event from the channel that produces e1 that occurred before e2 can arrive.

The problem with this solution, however, is that is not safe. This is because it is based on historic
estimates of maximum channel delays which may change over time. Thus, there might be cases
where the current estimate for the delay of a specific channel is not accurate and, as a result, the
serializer may fail to wait long enough for events which have been delayed.

Thus, we have chosen to pass events directly to the monitor as they arrive and store them in the
database of past events (see Database I in Figure 1). As such, events can be directly used by some
rules and if later on an earlier event e’ arrives which can be correlated with event e, then e is
retrieved from Database I and the inferences work as if all events had been perfectly serialised.

The problem with this alternative solution is that unless there is a means of identifying the latest
time until when an event may be needed when it is stored in the past event database, this database
can gradually grow very large and affect the performance of the monitor. For this reason, it is
necessary to compute an upper bound of the time until which an event should be stored in the
database that we will refer to as the time-to-live for the event in the following. In the case of Rule-
2 above, for example, if we assume that there is no other rule to monitor when the event e2 is
received with a timestamp 14 this event should be stored in the event database of the monitor until
the time of the channel that produces e1 events becomes 13.

Thus, in order to handle events which are captured by distributed event collectors and may arrive at
the monitor in arbitrary orders, we extended the monitor engine in three additional ways:

 Firstly, we implemented a theory analyser which analyses the set of the formulas which are
to be used in monitoring in order to establish upper bounds of the time-to-live for each
event. The time-to-live for an event is the time that it should stay in the event data base that
is maintained by the monitor in order to ensure that it will be available for consideration for
all the formulas that it could be unified with.

 Secondly, we modified the reasoning process of the monitor to ensure that it searches
through its event database even for future formulas.

 Thirdly, we implemented a component that scans the event database periodically to remove
all the events that have exceeded their upper time-to-live bound.

In the following, we describe the extension of the monitor engine that estimates the upper bound of
the time-to-live for each event.

A4.D3.3 – V2 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.0 Page 12 of 31

3.2.2.1 Estimation of Upper Time-To-Live Event Bound

The upper time-to-live of an event is the latest time point until which the event should be stored in
the database of the monitor to ensure that it will be available for unification with a formula if the
need arises.

The estimation of the upper bound of the time-to-live for each event which is fed to a monitoring
session is estimated at runtime based on constraints that the formulas which the event can be unified
with specify for the time variable of the particular event type and the time variables of the other
predicates in the formula.

More specifically, when the monitor receives an event e it first tries to unify it with a Happens
predicate in a formula that has an unconstrained time variable (i.e., a time variable whose upper and
lower bounds are not constrained by the values of any other time variables of the predicates in the
formula) and expresses the occurrence of an event that has the same type as e or a supertype of it. If
this succeeds, the monitor creates a new template instance for the formula and searches the event
database in order to find other events which may also be unified with the newly created instance. If
the event can also be unified with predicates in other formula instances that have constrained time
variables the monitor does the unification. Finally, if the event e can be unified with predicates
which have constrained time variables in other formulas that have not been instantiated yet, e is
stored in the event database of the monitor. In this case, the event e is stored along with a set of
upper bounds of its time-to-live (TTLe) which is defined as

TTLe = {(max(TTLe–clock1), clock1), …, (max(TTLe–clockk), clockk)} (F)

where max(TTLe–clocki) (1 ≤ i ≤ k) is the maximum time-to-live of the event e that is estimated
according to clock i. A clock i in the above formula is the clock of an event collector that produces
events which constraint e in different formulas. In the case of Rule-2 above, for example, a clock
would be the clock of the collector that produces e1 events. Note, however, that the same event
collector may be producing different types of events which impose different constraints upon the
time variable of an event e in different rules. In such cases, the TTL of e according to the clock of
the specific collector should be computed by taking the maximum of the TTLs for the given clock
which are computed by the different rules that include events imposing constraints on e and are
produced by the collector (hence the use of the operator max in (F)).

The upper bound of the time-to-live for an event e given the constraints of a specific rule is
computed as a solution to a linear programming problem. More specifically, assuming that a rule is
specified by a formula f that has n time variables, the lower and upper bounds of each of the time
variables Ti of it are defined by linear inequalities of the following forms:

(LB): aLi1T1+ aLi2T2 + … + aLinTn + bLi ≤ Ti

(UB): Ti ≤ aUi1T1 + aUi2T2 + … + aUinTn + bUi

Af Bf

−1 aL12 aL1(n-1) aL1n −bL1

aL21 −1 aL2(n-1) aL2n −bL2

A4.D3.3 – V2 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.0 Page 13 of 31

aL(n-1)1 aL(n-1)2 −1 aL(n-1)n −bL(n-1)

aLn1 aLn2 aLn(n-1) −1 −bLn

1 −aU12 −aU1(n-1) −aU1n bU1

−aU21 1 −aU2(n-1) −aU2n bU2

−aU(n-1)1 −aU(n-1)2 1 −aU(n-1)n bU(n-1)

−aUn1 −aUn2 −aUn(n-1) 1 bUn

Figure 3 −−−− Time Constraint Specification Matrices

The form of these constraints is imposed by EC-Assertion which requires that a range [LB,…,UB]
is defined for each of the time variables of the Happens predicates in a formula (see [1]) and LB,
UB are defined by linear functions over the values of one or more other time variables in the
formula and/or constants. The above inequalities (LB) and (UB), however, can be re-written as:

(LB’): aLi1T1 + aLi2T2 + … + aLi(i-1)T(i-1) + (-1)Ti + aLi(i+1)T(i+1) + … +aLinTn ≤ −bLi

(UB’): −aUi1T1 − aUi2T2 − … − aUi(i-1)T(i-1) + Ti − aUi(i+1)T(i+1) − … − aUinTn ≤ bUi

When e is received, the value of the time variable of the predicate that e can be unified with can be
further restricted to be equal to the timestamp of e. Following this, it is possible to compute the
maximum time for each of the events that could be unified with the other predicates of the formula.
This is possible by finding the maximum possible value for each the remaining time variables Tj of
the formula given the constraints Af Tf ≤ Bf and Tf ≥ 0 where Tf is the vector of the time variables of
f and Af and Bf are the matrices shown in Figure 3 which are constructed based on (LB’) and (UB’):

The computation of the maximum possible value for each the remaining time variables Tj of the
formula is equivalent to finding a solution to the linear programming problem

maximise Tj subject to Af Tf ≤ Bf and Tf ≥ 0

A solution to the above problem can be found by using the classic Simplex algorithm or one of its
variants [3].

A4.D3.3 – V2 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.0 Page 14 of 31

The matrices Af and Bf are constructed for each formula prior to the start of the monitoring session
according to the algorithm ConstructLinearInequalitiesMatrix(f, Af, Bf) that is defined below. This
algorithm constructs Af and Bf based on the forms (LB’) and (UB’) of the constraints of the time
variables of a formula f.

ConstructLinearInequalitiesMatrix(f, Af, Bf)

BEGIN

Let TMf = {T1,…,Tn} be the set of the time variables in f;

Let Af be an 2n × n matrix and Bf be an n × 1 matrix representing the boundary
constraints of the variables in TM in the standard form of a linear programming
problem

FOR each time variable Ti in TMf DO

 IF the lower boundary of Ti is defined by the formula

 “aLi1T1+ aLi2T2 + … + aLinTn + bLi ≤ Ti” THEN

 FOR k=1 to i-1 DO

 Af(i,k) = aLik

 ENDFOR

 Af(i,i) = -1

 FOR k=i+1 to n DO

 Af(i,k) = aLik

 ENDFOR

 Bf(i,1) = −bLi
 END IF

 IF the upper boundary of Ti is defined by the formula

 “Ti ≤ aUi1T1 + aUi2T2 + … + aUinTn + bUi” THEN

 FOR k=1 to i-1 DO

 Af (i,k) = −aUik

 ENDFOR

 LBf (i,i) = 1

 FOR k=i+1 to n DO

 Af (i,k) = −aUik

 ENDFOR

 Bf(i+k,1) = bUi

 END IF

END

Following the construction of the matrices Af and Bf prior to the start of a monitoring session, at
runtime the upper boundary of TTLe is computed according to the algorithm ComputeTTL(E, TTLE)
below.

A4.D3.3 – V2 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.0 Page 15 of 31

ComputeTTL(E, TTLE)

BEGIN

 TTLE = {}

 FOR EACH formula f that has a predicate P with a constrained time variable
which can be unified with E DO

 Let k be the number of time variables of f

 Let TE be the time variable of P

 Let Af and Bf be the time constraint matrix of f and I be the index of TE
in them

 RewriteAB(Af , Bf, timestamp(E), I, k, newAf , newBf)

 flag = 1

 WHILE there are more time variables T in F other than TE AND (flag = 1) DO

 maximise(T, newAf, newBf, maxT, flag)

 /* flag: is a variable taking the values 1 or 0 to indicate

 if:

 - a solution has been found by the routine maximise(1),

 - no solution exists (0)

 */

 IF flag = 1 THEN

 IF exists (maxE,c) in TTLE such that c == clock(T) THEN

 IF maxT > maxE THEN

 maxE = maxT

 ENDIF

 ELSE

 TTLE = TTLE ∪ {(maxT, clock(T))}

 ENDIF

 ENDIF

 ENDWHILE

 END FOR

END

RewriteAB(Af, Bf, timestamp(E), I, k, newAf, newBf)
BEGIN

 newAf = Af

 newBf = Bf

 FOR j=1 to k DO

 IF newAf[j,I] ≠ 0 THEN

 newBf[j] = newBf[j] − newAf[j,I]*timestamp(E)

A4.D3.3 – V2 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.0 Page 16 of 31

 newAf[j,I] = 0

 ENDIF

 ENDFOR

END

The algorithm ComputeTTL(E, TTLE) first rewrites the matrices Af and Bf in order to transform the
time constraints based on the known value of the time variable of P in f (this value is the timestamp
of the event E that can be unified with P). The transformation is done by the routine RewriteAB. For
all the constraints where the time variable of P that can be unified with the current event E appears
with a non 0 coefficient in the matrix Af, RewriteAB adds the product of the coefficient and the
timestamp of E to the corresponding value in matrix Bf and sets the relevant coefficient in Af to 0.
Thus, if, for example, the respective time variable is Ti, RewriteAB will rewrite the constraints of
the form:

(LB’): aLi1T1 + aLi2T2 + … + aLi(i-1)T(i-1) + aLiiTi + aLi(i+1)T(i+1) + … +aLinTn ≤ −bLi

(UB’): −aUi1T1 − aUi2T2 − … − aUi(i-1)T(i-1) − aUiiTi − aUi(i+1)T(i+1) − … − aUinTn ≤ bUi

as

(LB’’): aLi1T1 + aLi2T2 + … + aLi(i-1)T(i-1) + 0Ti + aLi(i+1)T(i+1) + … +aLinTn ≤

 −bLi − aLii timestamp(E)

(UB’’): −aUi1T1 − aUi2T2 − … − aUi(i-1)T(i-1) − 0Ti − aUi(i+1)T(i+1) − … − aUinTn ≤

 bUi + aUii timestamp(E)

Following this transformation, ComputeTTL(E, TTLE) finds the maximum possible values of the
time variables for the remaining predicates in the formula and sets the corresponding elements of
the set of TTLe to the maximum of these values. The found values represent the maximum time at
which events unifiable with the predicate that is associated with the respective time variable can
occur.

In the following, we explain how TTL is computed by the above algorithm using two examples.
Our first example is about a monitoring session in which the following rule is to be monitored:

Rule-3:

∀ t1, t2, t3: Time

Happens(e1, t1, ℜ(t1,t1)) ∧

Happens(e2, t2, ℜ(t1+1, t2))�

Happens(e3, t3, ℜ(t2+1, t3))

The constraints for the time variables of Rule-3 are as follows:

(C1): t1 + 1 ≤ t2

A4.D3.3 – V2 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.0 Page 17 of 31

(C2): t2 + 1 ≤ t3

These constraints are expressed in the form assumed by the Simplex method as follows:

(C1’): 1t1 – 1t2 + 0t3 ≤ -1

(C2’): 0t1 + 1t2 – 1t3 ≤ -1

Assuming that an event e3 is received at time t3 = 10, (C1’) and (C2’) are transformed into:

(C1’’): 1t1 – 1t2 + 0t3 ≤ -1

(C2’’): 0t1 + 1t2 – 0t3 ≤ -1 + 10

and the maximum value for t1 is 8 and for t2 is 9.

Thus, the TTL of e3 would be {(8, e1), (9, e2)}4. Note that, in this example, if e3 had been received
at t3=1 there would be no solution to the problem and, therefore, the event e3 in this case would not
have to be maintained for Rule-3. It should be appreciated, however, that in this case e3 could
still be recorded in the event database of the monitor if there was another formula for which there
was a solution.

Assume now another monitoring session where in addition to Rule-3, Rule-4 below should
also be monitored.

Rule-4:

∀ t1, t2, t3: Time

Happens(e1, t1, ℜ(t1,t1)) ∧

Happens(e4, t2, ℜ(t1+5, t1+7))�

Happens(e3, t3, ℜ(t2+2, t3))

The constraints for the time variables of Rule-4 are:

(C3): t1 + 5 ≤ t2

(C4): t2 ≤ t1 + 7

(C5): t2 + 2 ≤ t3

or equivalently in the form assumed by Simplex :

(C3’): 1t1 – 1t2 + 0t3 ≤ – 5

(C4’): – 1t1 + 1t2 + 0t3 ≤ 7

(C5’): 0 t1 + 1t2 – 1t3 ≤ – 2

Thus, assuming that an event e3 is received at time t3 = 10, (C3’) − (C5’) are transformed into the
following constraints by RewriteAB:

4 In the examples of this section, we use the event types (e1, e2, …) to refer to the event collectors that
produce the respective events and the clocks of these collectors. This is necessary as the specifications of
events in the rules used in our examples do not refer to the collectors which capture the events.

A4.D3.3 – V2 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.0 Page 18 of 31

(C3’’): 1t1 – 1t2 + 0t3 ≤ – 5

(C4’’): – 1t1 + 1t2 + 0t3 ≤ 7

(C5’’): 0 t1 + 1t2 – 0t3 ≤ 8

Based on (C3’’) − (C5’’), the TTL of e3 due to t1 (i.e., the time variable or clock of e1) would be 8
and the TTL of e3 due to t2 (i.e., the time variable or clock of e4) would be 9. Thus, in cases where
both Rule-3 and Rule-4 are being monitored the algorithm ComputeTTL, would set the TTL
of e3 to {(8, e1), (9, e2), (9, e4)}.

Note that the algorithm ComputeTTL(E, TTLE) considers all event types in formulas that can be
unified an event e. In this process, an event type is considered as the vector of types of the event’s
arguments and its result. Thus, an event can be unified with events in formulas whose type is a
supertype of its own or, equivalently, all event types which can be produced by considering the
supertypes of one or more of the event’s arguments. For example, if we have an event that
represents the call of the operation log(Car v, Employee p): Boolean, then its type is “log” × Car
× Employee × Boolean. The type of this event is a subtype of the event types “log” × Vehicle ×
Person × Boolean, “log” × Vehicle × Employee × Boolean, and “log” × Car × Employee ×
Boolean, assuming that Vehicle is a supertype of Car and Person is a supertype of Employee.
Consequently, formulas with the latter event types will also be considered.

Following the estimation of TTLe for an event e, e is stored in the event database of the monitor.
Subsequently, when the time-to-live for an event e expires, that is when the latest recorded times of
the clocks (channels) that constraint the event exceed its TTLe, the event is deleted from the
database. The guarantee that an event with a timestamp that is less than the timestamp of the latest
event which has been received from a channel cannot occur is due to the fact that we assume event
channels operating using the TCP/IP protocol and, therefore, the events received from these
channels arrive at the same order as the order in which they are dispatched.

3.2.3. Optimization of the Monitoring Process by Template Pruning
The main area that we looked at was how to reduce the increase in the number of active templates
during the monitoring process. This investigation focused at the process of template creation and
the possibility of pruning active templates which do not provide sufficient information for making a
decision about the rule instance that they represent and cannot be possibly updated by further
events. In the monitoring scheme implemented by the monitor, a new instance of a template is
created if the variable bindings of a predicate have values that are different from the event variable
values during the unification. This process may create many partially instantiated template instances
which are not needed in the monitoring process.

As an example of such cases, consider Rule-5 below:

Rule-5

∀ t1 :Time, ∃ t2 :Time

Happens(ev(_eID, _sender1, _receiver1, REQ-B, isAvailable(_car,
_loc),_sender1),t1,R(t1,t1)) ^

Happens(ev(_eID, _receiver1, _sender1, RES-A, isAvailable(_car,
_loc),_receiver1),t2, R(t1,t2))

� oc:self:sub(t2,t1) < 500

A4.D3.3 – V2 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.0 Page 19 of 31

When an event that represents the invocation of the operation isAvailable, with unique ID say
isAvail120, is encountered the monitor creates a new template instance and unifies the event with
the predicate Happens(ev(_eID, _sender1, _receiver1, REQ-B, isAvailable(
_car, _loc),_sender1),t1,R(t1,t1)) in the rule. Subsequently, when an event that
represents the response from the particular invocation of the operation isAvailable is encountered,
the monitor unifies it with the predicate Happens(ev(_eID, _receiver1, _sender1, RES-
A, isAvailable(_car, _loc),_receiver1),t2, R(t1,t2)) in the template instance
of the rule that it created when the invocation event occurred. However, to cover the possibility of
having another response to the same operation call with different variable values, v1 of DVP also
creates a another copy of the template that represents the partially instantiated rule following the
invocation. Although this functionality is in general necessary in order to ensure the completeness
of the reasoning process implemented by the monitor, the creation of the template copy in this
particular example (and, in fact, all cases which refer to the atomic invocation and response of a
synchronous operation) is not necessary. This is due to the semantics of the operation invocation in
the particular example. More specifically, in the case of Rule-5 there can be only one response to
the call of the operation isAvailable. To address this issue we amended the template creation
process in the case of unification of templates with events that represent responses from operation
invocations. This optimisation has led to dramatic improvement in the monitoring results which was
discussed in [5].

3.3. Other Limitations
In A4.D3.1 [1], we had summarised some limitations of the first version of the Dynamic Validation
Prototype that could be addressed in the second version subject to further assessment and
prioritisation. In this section, we revisit those limitations and give an overview of whether they were
eventually addressed along with a rationale for the way that we treated them.

3.3.1. Support for Future-Time HoldsAt Predicates
It is always possible that one specifies a formula where a HoldsAt predicate needs to be evaluated
in the future, for example, Happens(e, t1) � HoldsAt(f, t2) ∧ t1 ≤ t2. In the
current state of the prototype, the query for the aforementioned formula will be performed in the
time instance t1 and therefore the truth value of the HoldsAt predicate will be computed with
respect to the Initiates and Terminates predicates which have occurred up to the time instance t1.

It is evidently the case that this way of treating future-time HoldsAt predicates is incorrect, since
there can be more Initiates and Terminates predicates between the current time instance (t1) and the
future time instance (t2) at which we are interested in computing the value of the HoldsAt predicate.

This limitation will be corrected in the second version of the prototype.

3.3.2. Lack of Multiple Inheritance
Limitation: The object types which can be defined by the user can unfortunately only make use of
single inheritance, not multiple one. This is a direct consequence of the fact that the XML schema
does not allow one to describe a data structure which extends (i.e., inherits from) more than one
data structure.

As such, if multiple inheritance is needed, say type Z to inherit from types A, B & C, then one will
have to simulate it somehow, either by declaring that Z inherits from A and contains sub-

A4.D3.3 – V2 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.0 Page 20 of 31

objects/fields of type B & C, or by declaring three different types: ZA which inherits from A, ZB
which inherits from B and ZC which inherits from C and making as many copies of the formulae
which should contain a Z object to cover all cases. Unfortunately, none of these workarounds are
universally applicable.

Action: As discussed in A4.D3.1 [1], we do not currently plan to attack this limitation due to the
fact that we do not wish to abandon the representation of events and the EC language through
XML.

3.3.3. Support for Logical Clocks
Limitation: As explained earlier, DVPv1 assumed the all the events that were fed to the monitor
had time stamps generated by the same clock and arrive from the event collectors that captured
them to the monitor in the very order that is imposed by their timestamps. These assumptions do not
hold in a distributed system and the possibility of using a vector of event collector and monitor
clocks, similarly to the concept of logical clocks had been referred to as a potential solution to the
problem in [1].

Action: The implementation of clock synchronisation and the amendments that we introduced to the
monitor in order to deal with possible delays in the transmission of events have addressed this
problem without the need to rely on logical clocks.

3.3.4. Support for Non-Determinism
Limitation: DVPv1 has no support for non-determinism since all the fluents which are generated
during the monitoring process have a specific value always. In [1], we had identified the possibility
of offering support for non-determinism by supporting the use of the predicate of EC Releases
[8] as a means of reasoning about systems whose internal behaviour is not known.

Action: We have decided not to support this predicate as in monitoring typical security and
dependability properties we have not identified a need to support ambiguities in fluent values of the
above kind.

3.3.5. Support for a Full Object-Oriented Database
Limitation: The databases used in DVPv1 for storing past-time events and Initiates/Terminates
predicates were simple, in-memory databases that could by a full-fledged Object-Oriented database,
for example db4objects5, to enable a more efficient monitoring process.

Action: Our initial experimental and evaluation results have not indicated severe performance
problems that would require the implementation of this feature. Hence, although it might be
potentially useful, this feature was not implemented.

3.3.6. Minimisation of Past-Time Predicates in the DB
Limitation: DVPv1 stores all past-time predicates in the DB and never deletes them from it. Given
that the system may run forever, this will eventually lead to a situation where the DB is full and no
more predicates can be stored in it. We will therefore examine ways to minimise the number of
past-time predicates held at each time instance in the database.

5 http://www.db4objects.com/community/

A4.D3.3 – V2 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.0 Page 21 of 31

Action: This feature has been implemented through the computation of the time-to-live for events
and the deletion of events which can no longer be used in the reasoning process as explained earlier.

3.3.7. Calling External Functions
Limitation: In order to be able to support control and recovery, DVP will need to be able to perform
calls to external functions, so as to actively poll for specific events at particular instances, to be able
to respond to the events it receives for informing the SERENITY Framework of what the correct
action should be at the particular circumstances.

Action: This feature was not implemented as part of DVPv2 as it relates to control and recovery.
An implementation of it will be provided along with the recovery mechanisms which are due on
month 32 (A4.D6.1).

3.3.8. Supporting Internal Alarms
Limitation: Again, in order to be able to support control and recovery, we will need to provide
support for internal alarms and alarm handlers in the DVP. This will allow it to poll for a particular
event at regular intervals, to perform some control action at specific time instances, etc.

Action: As it relates to control and recovery this feature will be reconsider in the context of
producing the deliverable A4.D6.1.

3.4. Future Work
Future work related to the Dynamic Validation Prototype will focus on the integration of:

 the threat detection mechanisms

 the mechanisms for providing diagnosis for violations of S&D property monitoring rules

The above mechanisms are currently under development in the project and initial versions of them
are due in month 24. Following the release of their initial implementations, these mechanisms will
be integrated into DVP to provide a comprehensive monitoring platform.

A4.D3.3 – V2 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.0 Page 22 of 31

4. Installation and Usage Guide

4.1. Required Software
To use the dynamic validation prototype, the user should download and install on his/her machine:

 Version 5.0.14 of the Tomcat server – This server can be downloaded from
http://tomcat.apache.org/. An installation guide for the server is also available at the same
site. Please consult the release note of tomcat for the selection of right XML parser.

 Version 1.4 of Axis server – This server can be downloaded from

 http://ws.apache.org/axis/. An installation guide for the server is also available at the same
site.

4.2. Installation
 To install the monitoring manager, extract the files in the archive into the folder: C:\Monitor

 To install the data analyzer, copy the folder C:\Monitor\analyzer\code in the classes folder of
the axis installation in Tomcat. This prototype assumes that the Tomcat server is deployed
on port number 8080 (i.e. default port for tomcat).

4.3. How to Use the Prototype

4.3.1. The Data Analyzer
To start the data analyzer, the user has to start the tomcat server by executing the startup

file in the TOMCAT_HOME\bin folder.

To use the analyzer with the monitoring manager, in a command prompt window give the command
C:\Monitor\analyzer\deploy The data analyzer is up and the wsdl specification of the
data analyzer service can be seen at:

http://localhost:8080/axis/services/analyzerService?wsdl

and the analyzer service endpoint is

http://localhost:8080/axis/services/analyzerService

Section 4.3.2 describes how to use City monitoring manager and event collector.

4.3.2. The Monitoring Manager
The monitoring manager is used to import and select the formulae to be monitored, send the
selected formulae to the data analyzer, start the event collector for a monitoring session, initiate a
polling process that retrieves possible violations of the properties and view the result of monitoring.
To retrieve violations of properties, the monitoring manager polls the data analyzer at regular time
intervals that can be specified by the user and shows the results that it retrieves in a formula viewer.

To use the monitor manager, follow the following steps:

1. To start the monitor manager, in a command prompt window execute the command
C:\Monitor\manager\RunManager as shown in Figure 4 below. Following this, the
monitor manager window will pop up.

A4.D3.3 – V2 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.0 Page 23 of 31

Figure 4 – Command prompt window

2. Then, to import the formulae to be monitored, select the option "Import Formulae" from the
"File" menu of the manager.

3. In the file opening dialog box that appears following the selection of this option (see Figure
5), choose the XML file that contains the formulae that you want to monitor.

A4.D3.3 – V2 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.0 Page 24 of 31

Figure 5 – The file opening dialogue box

4. The monitor manager will then read all the formulae from the file and display the formulae
in the display panel of the monitoring manager as illustrated in Figure 6.

A4.D3.3 – V2 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.0 Page 25 of 31

Figure 6 – The Monitoring Manager

The monitoring manager lists the identifiers of the imported formulae in the "Imported
Formulae" panel. To view a formula in the event calculus format, the user may select its ID.
Following this selection, the formula with the selected ID will be shown in the "Formula
Viewer" panel of the manager. If the user wants to select the formula to be monitored,
he/she may select its ID in the imported formulae panel and click on the "Select" button.
Following this, the selected formula will appear in the "Selected Formulae" panel. The user
may repeat the same process to select more formulae. When the selection is complete, the
user can click on the "Confirmed" button, to send the formulae to the data analyser. If the
submission of formulae to the analyser is successful, the monitor manager will show the
following message. The user should press the "Ok" button to continue (see Figure 7).

Figure 7 −−−− Formulas submission message

A4.D3.3 – V2 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.0 Page 26 of 31

5. The next step is to provide the analyzer with runtime events. From the Start Data Collection
command in the Controls menu of the monitor manager we can activate the collection of the
events. The monitor manager can by default accept events in the port number 12345 and
report them to the analyzer. The format of those events is based in the event XML schema
described in [2]. Any event collection mechanism that can provide events according to the
defined XML schema can be used to report the events. For the purposes of the demo we can
use the SOAP event collector which can be located in C:\Monitor\SoapCollector.
This application creates a proxy service which listens to a user defined port number, accepts
incoming SOAP messages, translates them to a Serenity event format and then forwards
them to the real web service for the execution of the service and to the monitor management
tool. For the execution of the collector the user must type java –cp
xercesImpl.jar; commons-net-1.4.1.jar; code.TcpTunnel followed by
the parameters of the listening port, the IP address and port of the real web service and the
IP address and port of the monitoring manager. In our case, where the Tomcat is deployed
locally in the default port (i.e. 8080) and the manager listens for events in the 12345 port,
the execution command should be java –cp xercesImpl.jar;commons-net-
1.4.1.jar; code.TcpTunnel 8081 localhost 8080 localhost 12345.
Now that the collector is activated we must inform the monitor manager to accept any
events are send to it by selecting the Start Data Collector option from the Control menu (see
Figure 8). Any attempt to invoke a web service in the port 8081 will result to report this
event to the monitor manager tool.

Figure 8 – Starting and stopping data collector in the Monitoring Manager

A4.D3.3 – V2 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.0 Page 27 of 31

6. The user may stop the data collector by selecting the option "Stop Data Collector" in the
"Control" menu (see Figure 8)

7. To start polling the data analyser in order to view the violations of the formulae being
monitored, the user should select the option "start polling" from the control menu.
Following this, the monitor manager will start polling the data analyser at regular time
intervals (the default time interval is 10 seconds).

The monitoring manager shows the list of instances of the violated and satisfied formulae in
the "Monitoring Decision List" panel as shown in Figure 9. This panel will be updated at the
regular intervals. The Monitoring Decision List will show the monitoring summary of each
instance of each formula. The left most column in this list shows the unique formula
instance ID, the middle column shows the decision for the formula instance, and the right
most column shows the time when the decision was made by the data analyzer.

 Figure 9 – Monitoring Decision and Formula Instantiation Panels

8. To view the details of a formula instance, the user should select the relevant formula
instance in the Monitoring Decision List. Following this, the monitor manager shows the
details of the formula instance in the "Formula Instantiation Details" panel (see Figure 9).
This panel displays the formula status, other formulae that the specific formula may depend

A4.D3.3 – V2 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.0 Page 28 of 31

on (see [8] for a definition of formula dependencies and how they are used in monitoring),
and the values bound to the variables of the formula. "Formula Instantiation Details" panel
also shows the truth values of the individual predicates of the formula, the timestamps of the
establishment of these truth values, and the source of the information that underpins them
("Recorded" for events generated directly by the system under observation and "Derived"
for events generated by deductive reasoning as described in [8]).

9. To change the polling interval, the user should select the option "stop polling" in the main
monitor manager window, then select "parameters" from the "control" menu in this window
and, in the dialog box that pops up (see Figure 10), specify a new value for the polling
interval. Subsequently, the user should select the option "restart polling" from the control
window.

 Figure 10 – Monitor Manager parameters dialogue box

10. To stop the manager, first stop the data collector (if it is running), stop polling, then select
exit from file menu.

4.4. Example of Using the DVP Together With multiple Event
Collectors

In DVPv2 data collectors are identified by the IP address of the machine hosting the data collector.
Therefore it is recommended that each data collector should be deployed on a different machine. In
section 4.3 we discussed the command line arguments needed to start the data collector. We review
the arguments once again here,

java –cp xercesImpl.jar;commons-net-1.4.1.jar; code.TcpTunnel
listeningPort webserviceHost webservicePort monitorManagerHost
monitorManagerHost

listeningPort : This is the port the data collector is listening to. The default value of this port is
8081

webserviceHost: This is the IP address of the machine that hosts the actual web service. We
recommend to use the actual IP address of a machine as the value of this parameter, rather than
localhost or 127.0.0.1

A4.D3.3 – V2 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.0 Page 29 of 31

webservicePort: This is the port number that the web service container listening to.

monitorManagerHost: This is the IP address of the machine hosting the monitor manager. We
recommend to use the actual IP address of a machine as the value of this parameter, rather than
localhost or 127.0.0.1

monitorManagerPort: This is the port number that the monitor manager is listening to. The
default value of this port is 12345.

In the rest of this section we will demonstrate a simple example of the usage of the analyzer and the
monitoring tool. To make use of this example you must follow the following steps.

 Install Tomcat and Axis.

 Start Tomcat using the default port number(i.e. 8080).

 Deploy the analyzer service as described in 4.2 .

 In the same way as in the previous step deploy the service located in
C:\Monitor\examples\findSubstitudeDoctor, only this time copy the dri folder in the classes
folder of axis.

 Check that both analyzerService and DoctorRegistryInquiryPT web services have been
deployed correctly by pointing your browser at
http://localhost:8080/axis/servlet/AxisServlet.

 Start the monitor manager.

 Import the formulae located in the aegean_formula.xml file in the C:\Monitor\examples
folder. Select the Q2 formulae and press Confirm to report the selected formulae to the
analyzer service.

 Start the SOAP Collector by executing the RunCollector.bat file from the
C:\Monitor\SoapCollector folder.

 Activate the Data Collection and Polling options from the Controls menu of the monitor
manager.

 Execute the RunTestDRI.bat file from the C:\Monitor\examples\findSubstitudeDoctor folder
which invokes the DoctorRegistryInquiryPT web service.

A4.D3.3 – V2 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.0 Page 30 of 31

5. Conclusion
This report has provided an overview of the first version of the Dynamic Validation Prototype
(DVP) which has been developed by City University in SERENITY (as part of the deliverable
A4.D3.1) and then describes the amendments that were introduced to this prototype as part of its
second version. The latter version along with this report constitutes the deliverable A4.D3.3 of
SERENITY.

This report has focused on the extensions that were implemented in the second version of DVP.
These included:

 Changes in the functionality of the various Event Collectors and the Monitor engine to
enable the synchronisation of the clocks of the former with the clock of the latter component
when Event Collectors are distributed on different machines.

 New functionality in the Monitor Engine, to deal with the problem of unordered receipt of
events by the monitor that might be caused by delays in the transmission of events from
distributed event collectors.

 Optimisations of the monitoring process that enable the pruning of active templates in order
to reduce the average time of making a decision about the satisfaction of a formula.

The document also revisits limitations that had been identified for the first version of DVP, and
indicates whether action has been taken to address them. Finally, this report contains a guide for the
installation and usage of the second version of DVP that has been delivered as part of A4.D3.3.

A4.D3.3 – V2 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.0 Page 31 of 31

References
[1] Androutsopoulos K., Ballas K., Kloukinas C., Mahbub K., and Spanoudakis G. (2006): V1 of

Dynamic Validation Prototype, Deliverable A4.D3.1, SERENITY Project

[2] Campadello S., Compagna L., Gidoin D., Giorgini P., Holtmanns S., Latanicki J., Meduri V.,
Pazzaglia J.-C., Seguran M., Thomas R., and Zanone N. (2006): S&D Requirements specification,
Deliverable A7.D2.1, SERENITY Project

[3] Cormen T., Leiserson C., Rivest R., and Stein S. (2001): Introduction to Algorithms, Second Edition.
MIT Press and McGraw-Hill. ISBN 0-262-03293-7.

[4] Kloukinas C., Ballas C., Presenza D., and Spanoudakis G. (2006): Basic set of Information Collection
Mechanisms for Run-Time S&D Monitoring, Deliverable A4.D2.2, SERENITY Project

[5] Kloukinas C., Mahbub K., and Spanoudakis G. (2007): Evaluation of V1 of Dynamic Validation
Prototype, Deliverable A4.D3.2, SERENITY Project

[6] Maña A, Muñoz A, Sánchez F, Serrano D. (2006): Patterns and Integration Schemes Languages,
Deliverable A5.D2.1, SERENITY Project

[7] NTP, www.ntp.org (last seen on 3/8/2007)

[8] Shanahan, M. P. (1999): The Event Calculus Explained, in Artificial Intelligence Today, LNAI no.
1600:409-430, Springer

[9] Spanoudakis G., Kloukinas C., Androutsopoulos K. (2006): Towards Security Monitoring Patterns,
22nd Annual ACM Symposium on Applied Computing, Technical Track on Software Verification (to
appear)

