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SIMILARITY-BASED CATEGORIZATION:
THE DEVELOPMENT OF PROTOTYPE THEORY
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It is now twenty years since Rosch and Mervis first published the mass of
evidence on which the Prototype Theory of concepts was originally based -
(Rosch, 1977; Rosch & Mervis, 1975). The theory has evolved many varieties
over the years - varieties which have rarely been made explicit. These different
ways of interpreting the notion of a prototype have often been a worrying source
of vagueness and confusion in the theory. In this article these different
interpretations will be examined by looking at the kinds of attribute which could
be involved in a prototype representation, and discussing how the model could
be formulated in each case. It will be argued that a key element required for a
successful model of prototypes is the element of abstraction, and that certain
versions of Prototype Theory that lack this element are inadequate as a result.

In spite of its age, the Prototype Theory of Concepts (PTC) remains the
primary example of a model that attempts to explain the representation of
concepts and word meanings in terms of more elemental units of representation
- namely properties. While exemplar models have emphasised a non-analytic
approach to concepts based on episodic experience (Brooks, 1987), and theory-
based approaches have proposed complex propositional structures for conceptual
representation (Murphy & Medin, 1987), PTC has held the middle ground of
trying to account for extension in terms of intension — that is to explain the
membership of an instance in a category in terms of the respective properties
of the instance and category. In the context of PTC, this is to say that we try to
account for the semantic content of noun concepts such as APPLE, FISH or
WEAPON, in terms of adjectival/predicate concepts such as ISROUND, CAN
SWIM or IS USED FOR FIGHTING. This enterprise is parallel to the
commonly accepted way of defining the meaning of nouns, adopted in
dictionaries, of providing definitions in terms of the essential or commonly
found properties of the class of objects or things named by the noun.

Ithas often been argued (see for example Fodor et al., 1980) that the principle
assumption of this approach is that properties are in some sense psychologically
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prior to noun concepts. If we explain the structure of APPLE in terms of PEEL
and COLOUR and TASTE and so forth, then it implies that the latter can be
defined without recourse to APPLE. I do not intend to rehearse the arguments
about this problem here. But it is important to understand that PTC must be
committed to an account of how properties are psychologically grounded out
in non-linguistic experience (see for example, Barsalou, 1993). This need to
ground out properties means that we should have a preference for attribute
representations that are closer to direct experience (Schyns, Goldstone, &
Thibaut, 1995). In considering the varieties of PTC, I will therefore start with
representations that are the simplest and most direct copies of experience, and
then introduce degrees of abstraction and elaboration as r.he need for more
powerful models is demonstrated.

I start with a very general definition of what I take to be the essence of the
prototype theory, and a very brief review of evidence that is commonly cited
in favour of the theory. This will then lead into a consideration of more specific
models based on the theory, differing in the type of attribute representation that
is assumed.

Definition of the Prototype Theory of Concepts Framework

The central claim of PTC is that both classification of instances in concept
categories, and also the classification of classes of instances (subtypes) in
superordinate categories is based on “similarity” to a prototype. I place scare
quotes around similarity, because I want to leave open the possibility that the
similarity involved here need not map directly onto similarity as it would be
judged out of the context of the categorization. For example, simple “context-
free” similarity judgments generally emphasize physical appearance, whereas
in the context of a category judgment the similarity to a prototype may also
involveless perceptually salient properties such as function, history or location!,

A prototype concept has three elements:

a) The prototype representation itself - generally taken to be a generalisation
or abstraction of some central tendency, average or typical value of a class of
instances falling in the same category,

b) a way of defining similarity to this prototype,

c) a criterion or cut-off level of similarity for category membership. All
instances that pass this criterion are members of the category. All instances that
fail the criterion are non-members.

' PTC will also need a mechanism for determining how contexts affect the differential
weighting of properties in the concept representation. This problem is beyond the scope of this

paper.
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Passing the similarity criterion is thus both necessary and sufficient for
category membership. A common source of confusion is that PTC is often
characterized as the theory that “there are no necessary or sufficient criteria for
category membership”. This oft-quoted characterization however refers to the
fact that there is no sufficient definition of category membership which can be
framed simply in terms of @ conjunction of necessary properties. It should not
be taken to imply that there are no membership criteria at all, as this inference
is clearly false according to the definition of PTC offered here.

As a general definition of a framework for PTC this characterisation leaves
open the question of just how the prototype representation is formed - it could
be a crude statistical average across instances as might be characterised by a
simple neural net, or it could be as complex as a recursive frame representation,
as implemented in Artificial Intelligence knowledge representations (see
Barsalou & Hale, 1993). The way in which similarity is defined will likewise
depend on the kind of representation used for the prototype. It could be argued
that the spirit of PTC requires a simple representation such as a feature list, as
was proposed in early accounts of the theory (see for example Hampton, 1979;
Rosch & Mervis, 1975). I will argue however that the essence of the theory —
that categorization is based on similarity to a prototype — need make no prior
assumptions about the complexity of the prototype representation itself. All
that is required is that a means of defining similarity be specified for whatever
form of conceptual representation is chosen.

Prototype Theory is also broad in the range of logical structures it can
represent. In effect it can represent any “linearly separable” concept structure.
Forexample it can represent concepts that have conjunctive definitions with no
other properties, concepts with conjunctive definitions but with additional non-
necessary properties, or even disjunctive concepts. While such logical structures
appear more in keeping with the Classical theory of concepts (see Smith &
Medin, 1981), Hampton (1995) showed that apparently classical well defined
concepts could in fact be represented as prototypes in which the weight of
certain features is set particularly high. Consider the simple feature list
prototype concept shown in Table 1.

Table 1
A Prototype Concept With Five Features

Feature Weight

10
10
3

o a0 o
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If we assume that similarity to the prototype is based on a simple summation
S of matching featire weights (a simplified version of Tversky’s similarity
axiom, Tversky, 1977), then the maximum possible match will correspond to
an S of 26. If the criterion for category membership is set at 26, then effectively
the concept is a classically defined concept - all five features are necessary for
membership. (Note that in this case, the differential weights for different
features are redundant.) If the membership criterion drops to the range from 21
to 24, then features a and b are still necessary, but they are not sufficient, so we
have a prototype concept, where [abc, abde, abed, abce, and abede] are all
category members. Allowing the criterion to fall now to between 17 and 20, the
concept becomes what Hampton (1988) called a binary concept - that is there
is now a defining core, consisting of features a and b, which together are both
necessary and sufficient. Features c,d and e are unable to influence category
membership, since in conjunction they do not have sufficient weight to
compensate for the loss of either a or b. Features ¢,d and e are therefore what
Smith, Shoben and Rips (1974) termed characteristic features - that is they will
affect typicality of category members, but will not affect category membership.
Suppose now that the criterion falls further, to between 11 and 16. In this case
the concept appears once more to have a prototype structure, with none of the
features being either necessary or sufficient on their own. When the criterion
is 10, then the concept becomes a simple logical disjunction [a or b], and the
features c,d and e once more become irrelevant to categorization. Between 2
and 9, the concept appears once more as a prototype, and with a criterion of 1,
of course, a disjunction of all features characterises the concept.

Table 2 summarizes the change in the apparent logical structure of the
concept category, as the criterion varies across the full range from 1 to 26. It
should be clear from this example, that apparently complex logical forms may
in fact be captured by PTC, and most importantly that the existence of

Table 2
Logical Structure of the Concept in Table I as the Criterion Level for Membership Varies

Criterion in range Logical structure of concept Characteristic features
26 Conjunctive [abcde) |
25 Conjunctive [abed] e
21-24 Prototype "
17-20 Conjunctive [ab] cd.e
11-16 Prototype
10 Disjunctive [ab) cde
2-9 Prototype
1 Disjunctive [abcde]
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conjunctive or disjunctive definitions for concepts is entirely consistent with
the PTC framework.

The PTC can not account directly for non-linearly separable concepts such
as exclusive disjunction (A or B but not both), or more complex disjunctive
concepts. While it has been shown that linearly separable concepts are not
necessarily easier to learn as artificial concept structures (Medin &
Schwanenflugel, 1981), there has been little work to show that natural semantic
concepts are not in fact linearly separable. (Some concepts may however be
disjunctive - for example the males and females of many biological kinds often
have different size and appearance.) Note however that if similarity is not
assumed to be a simple linear function of matching features (Tversky, 1977) but
alsoto involve the matching of appropriate correlated attribute pairs or attribute
relations (Goldstone et al. 1991), then the restriction of PTC to linearly
discriminable concepts is not a necessary constraint. Hampton (1995) reported
evidence that similarity to prototype may in fact involve a multiplicative
function for combining feature matches, rather than a linear addition (see also
Medin & Shaffer, 1978; Shepard, 1987).

Evidence for PTC

Having given a broad definition, I will next turn to evidence for PTC which
will serve to constrain the details of prototype models developed later in the
paper. The two main sources of evidence concern “non-classical” effects in the
intension and extension of noun concepts. In terms of the intensional, or
attribute information, it has been commonly found

(1) that concepts have no clear conjunctive definition (i.e., no combination
of necessary features that are together sufficient for category membership), and
(2) that concepts are associated with a lot of attribute information which is non-
defining, in the sense of being more true of category members than of other
things, but not true of all category members.

For the extensional or category membership structure of concepts there are
again two phenomena associated with PTC. (3) Category members can be
consistently ranked according to how well they fit the category - the well known
Typicality (or prototypicality) Effect, and (4) when instances have very low
typicality, there may be disagreement and inconsistency in their classification
in the category - there are Borderline Cases.

A third piece of evidence for PTC comes from the demonstration of
intransitivity in concept hierarchies (Hampton, 1982; Randall, 1976). There are
concept hierarchies where although people claim that A is a kind of B, and B
is a kind of C, they will deny that A is a kind of C. This intransitivity
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phenomenon is clearly inconsistent with a class inclusion taxonomy based on
necessary defining features. The possibility of intransitivity was interpreted by
Hampton (1982) as a prediction that is derivable from thie way in which PTC
handles superordination of classes. Few psychological models of conceptual
representation make. any distinction between judging whether individual
instances are members of a category (categorization) and judging whether
particular classes are members of a category (superordination). When asked to
decide whether 2 PENGUIN is a BIRD, people are in fact not classifying
instances, but a whole type of instance - namely all possible creatures that are
in the class of penguins. The framing of PTC given above can be extended to
provide an account of superordination as follows:

A class C will be a subcategory of a superordinate class S, provided that the

prototype for C is sufficiently similar to the prototype for S.

This definition allows for intransitivity in a simple fashion. For example the
prototype for CARSEAT may be sufficiently similar to that for CHAIR to
warrant categorization, while likewise CHAIR and FURNITURE may be
sufficiently similar to warrant classing a chair as a kind of furniture. However
if the basis of similarity is different in each case, then there may be little in
common between CARSEAT and FURNITURE, and hence the classification
of a carseat as a kind of furniture will not be allowed. In the review of prototype
models that follows, an account of superordination that may allow intransitivity
will be one of the criteria for evaluating each model. What all models will have
in common is the claim that intransitivity arises because judgements of class
inclusion are based on a consideration of whether the prototype for the subclass
lies within the boundary of the superordinate, rather than whether the whole
subclass lies within the superordinate class. This is taken to be an essential
aspect of PTC, which differentiates it from other models of concepts.

Each model has then to provide an account of superordination - that is to
show how a subclass of instances can be judged to belong to a superordinate
class, simply by comparing the prototype representations of the two classes.
The definition of superordination given above leaves amajor problemunsolved
- the definition of “similarity” in this context. Computing the similarity of an
instance to a class prototype is relatively straightforward - the instance has a
unique set of properties which characterize its nature. Comparing the similarity
of two prototypes however is more complex. Each has a range of weighted
properties which are more or less characteristic of the concept. How is the
comparison to be made? More importantly, it is necessary to develop a means
of ensuring the irreversibility of categorisation statements - if A is akind of B,
then B is not generally a kind of A. .

A categorisation differs from a similarity judgment in the strong asymmetry
of the relation between subordinate and superordinate classes. One can say
“Apples are similar to Pears”, and “Pears are similar to Apples”, and generally
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the terms are reversible if a simple non-metaphorical sense of “similar” is
intended (although Tversky (1977) has shown consistent asymmetry in cases
where the stimulus salience is very imbalanced, these effects are generally
quite small). For categorisation however this cannot be the case. If “Aisa type
of B”istrue, then it should always be false that “B is a type of A”, unless perhaps
A and B are coextensive.? Similarity based categorization models such as PTC
need to have some mechanism or constraint which will prevent the acceptance
of the reversed categorisation. We will see that different mechanisms -are
available, again depending on the Kind of attribute that is used for representing
the prototype.

Prototype Models of Concepts

Attribute free prototypes. We are now ready for a more detailed analysis of
PTC. The analysis will begin with one of the first published versions of the
theory — Posner & Keele's (1968) concept learning task which appeared under
the ambitious title “On the genesis of abstract ideas”. I choose this study as a
starting point because it seems to be the best representation of a prototype with
no clear attribute structure. The prototype formed by the subjects was a pattern
of random dots, each of which could be displaced in a random way to introduce
increasing levels of distortion from the initial prototype. Subjects learned to
discriminate between two such prototype classes over a sequence of learning
trials.

I will call this first, most primitive, form of a prototype the “attribute-free”
prototype. This is because the representation is taken to be an unanalyzed
central tendency of the stimulus set. The prototype is not therefore any more
abstract than any individual stimulus pattern - it is just the pattern around which
the others are distributed.

The similarity metric then needs to be defined in a way which does not
involve integration over properties. One could argue that a truly unanalyzable
Attribute Free Prototype would have no definable similarity metric - two
stimuli are either identical, or they are different. More realistically, one could
propose some non-analytic global matching process, which could provide a
measure of distortion (assuming that the problems of maximising alignment of
dots between stimuli and defining levels of distortion could be resolved). The
criterion for categorization would then be the degree of allowable distortion
from the prototype across category members.

*This asymmetry is less clear in more abstract domains. For terms describing personality traits,
(Hampson, 1982), and mental activities (Rips & Conrad, 1989) the direction of categorization may
be less obvious.
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To take the example of Posner and Keele's (1968) random dots, the set of
possible stimuli is vast. For example the number of “nearest possible neighbour”
stimuli which involve just one of the nine dots being moved the smallest
amount in any of 8 directions would be 9x8 = 72 (assuming no two dots are
actually immediately next to each other to start with). The number of stimuli
in which each dot has either moved minimally or has not moved at all is 9* or
387,420,489. These would all probably be category members, involving as
they do a minimal distortion of each dot. The full range of stimuli forms a
branching graph network structure where each stimulus is connected to eight
neighbours involving just one minimal change in one dot. Level of distortion
between any two stimuli can then be defined as the shortest possible path
through the network representing all possible stimuli.

Although this kind of stimulus structure is frequently found in the concept
learning literature (Homa, 1984; Hintzman, 1986), there has been little research
on whether people actually possess these kinds of prototypes as naturally
occurring concepts. There is probably a strong bias to analyze even the most
random shapes into properties - like the constellations of stars in the night sky.
For example, subjects faced with random shapes or random dot patterns are
very likely to identify certain regions as “parts” or “features”, (Thibaut, 1995;
Thibaut & Schyns, 1995). Similarly, when asked to do a free sorting of complex
stimuli on the basis of “what goes together”, subjects are heavily biassed
toward generating sorts based on single simple identifiable features (Medin,
Wattenmaker, & Hampson, 1987; Regehr & Brooks, 1995). Perhaps the best
candidates for such prototypes might be representations of familiar sensory
stimuli, such as individuals’ faces, or characteristics of non-visual sensory
experience such as the sound of someone’s voice, or the way they walk.

How might one be able to identify a concept has having an Attribute Free
Prototype structure? One possibility would be to show that pairwise similarity
ratings required a high dimensionality for a multi-dimensional scaling solution
— the similarity space needing approximately as many dimensions as there are
different ways of minimally distorting one stimulus into a different one
(Kruskal & Wish, 1978). A second criterion might be that the stimulus structure
should not be readily apparent to introspective report. Subjects asked to
describe the stimuli should find it hard to express any features of the stimulus
in a coherent way.

How does the attribute free model account for intransitivity and
superordination? What is required according to the analysis presented above is
(1) that categorization be asymmetrical, and (2) that intransitivity may arise as
aresult of basing class inclusion on consideration of whether the prototype for
a subclass (rather than all members of the subclass) lies within the superordinate
category.

To test these ideas, we need to draw a putative three level hierarchy
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consisting of instances, subclasses and superordinates. There has in fact been
little empirical research using a three level hierarchy of such patterns. Generally
the concept learning paradigm is only concerned with categorisation of
instances, not of classes. Nor is it known whether such stimuli would show
intransitivities of class inclusion judgments. I will assume that they would, in
order to test the power of the model for accounting for such a result.

To generate a class inclusion hierarchy without recourse to intensional
properties, one needs to specify a constraint on the classes such that the criterion
of allowable distortion for the top level class should be greater than that for a
lower level class. To illustrate this, a means of representing attribute free
prototypes is needed. In Figure 1, classes are represented by letters standing for
prototypes, and numbers in parentheses indicating the criterion for class
membership - that is the level of distortion allowable from the prototype before
aninstance is rejected from the class. The degree of distortion between any two
prototypes is then shown by labelling the links between them with a number,

A ()

B (3)

TR

3
I3 I4

Figure 1. Class hierarchy of distortion based prototype classes.
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Figure 1 shows a three level hierarchy of attribute free prototypes. The top
level concept A, has a membership criterion of 5, meaning that any stimulus
with a distortion level of 5 or less from A is considered a category member. At
the middle level of the hierarchy is a prototype B which is adistortion of 4 away
from A (and hence falls within the top level category). Membership in the
prototype class for B is defined with a distortion criterion of 3. At the bottom
level are 4 possible instances.

Asymmetrical class inclusion is achieved in Figure 1 by having the top level
concept A have a wider range of allowable dist?nion than concept B. Thus the
prototype for B is contained within A, whereas that for A is not contained within
B. Subjects would thus be inclined to agree that “B is a type of A” but not that
“Aisatypeof B”. Intransitivity is also possible in this scheme, since an instance
with a distortion from the prototype for B of 2 or 3 (see I3 and 14 in Figure 1),
could have a distortion of more than 5 from the prototype for A, and hence fall
outside the superordinate category.’ To avoid intransitivity, a constraint would
have to be introduced that the allowable distortion from B should not take any
instance of B outside the allowable distortion from A. That is:

Class B is a proper subset of Class A iff:

(Distortionfrom A to B) + (Criteriondistortion for B)<(Criterion distortion
forA)

However there are immediate problems with this model. In order to maintain
asymmetric categorization, it will require that the distortion from A to B is
never less than the criterion distortion for B. If this constraint is broken then the
prototype for A will lie within the allowable range B, and bi-directional
categorization will occur. But this constraint appears to be both arbitrary and
counter-intuitive. We would normally expect that subclasses could be as close
as they like to their superordinate prototype, yet we are now introducing a
constraint that keeps subclasses at a certain distance from the superordinate.
Effectively an instance that exactly matches the superordinate prototype
cannot, according to this constraint, fall in any identifiable subclasses of the
superordinate. This constraint appears impossible to motivate on any intuitive
or empirical ground. We must conclude therefore that attribute free prototype
representations are insufficient for representing concept hierarchies.

Spatial prototypes. The second prototype model I consider is the dimensional
model. Introduced as a model of semantic memory by Rips, Shoben and Smith,
(1973) this model takes a given set of instances as being distributed in a
dimensional space defined by attribute dimensions, and proposes that a

31 say “could”, because the distortion away from prototype B, could of course be back towards
the prototype A.
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prototype is a point in the space corresponding to the centroid of an instance
cluster,

Similarity is defined as

Similarity = {Sum over dimensions [w. (P -1)]"} "
where w is the dimensional weight corresponding to a scaling factor for the
dimension in a spatial representation, (P - I) is the difference between prototype
and instance values on that dimension, and the exponent n would be 2 in a
Euclidean spatial representation, or 1 in a city block model. The spatial model
shares with the attribute free model the constraints of the triangle inequality (for
any three points in the space A, B and C, the distance AC < AB + BC), and
symmetry (the distance AB = the distance BA). However the spatial model
normally assumes that the dimensionality of the space is restricted to a
reasonably small number - usually 3 or 4 dimensions are assumed sufficient to
capture all reliable variance in the similarity relations amongst stimuli.

The spatial model has been commonly used in artificial concept learning
tasks - notably in the work of Nosofsky (e.g., Nosofsky, 1988). It has also been
used by Rips, Shoben and Smith (1973) to represent category typicality
structure, and Osherson and Smith (1981) also included a spatial prototype as
part of their formalisation of PTC, although they had little to say about this
aspect of the theory in their critique.

In the dimensional model the Prototype is a point in space and Similarity is
distance in space. If afixed criterion is placed on similarity, then in a Euclidean
space, the category region would be spherical (if three equally weighted
dimensions were employed). City block metrics with a fixed criterion would
define cubic category regions. Interestingly both of these proposals are liable
to produce a messy division of the space into categories. If overlapping sets are
to be avoided, then the criteria must be drawn tightly, and “gaps” would appear
between concept categories - items that belong to neither of the neighbouring
categories. If gaps are eliminated then overlap will be necessary. In fact, there
is some evidence in semantic concepts that there are both gaps and overlap
among semantic categories. For example the English language divides edible
plant produce broadly into Fruits and Vegetables. However if asked about each
category separately, the likelihood of an object being classed as a Fruit and the
likelihood that it is classed as a Vegetable may in some cases (like tomato or
avocado) sum to greater than 1, and in other cases (like rice) sum to less than
1 (Hampton, 1979).

To avoid gaps and overlaps all together (as in a forced choice classification)
it is necessary to use a decision rule for the criterion on similarity which takes
account of the proximity of neighbouring categories. Rosch (1978) found
evidence for this kind of criterion in both natural categories and in artificial
categories. Where there were contrasting categories A and B, degree of
membership in A depended in part on degree of dissimilarity from the
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contrasting category B. We may therefore expect to find that the shape of
category boundaries may depend on whether subjects are encouraged to
consider categories as overlapping, as opposed to contrasting sets. Appliqatioq
of the spatial approach to natural concepts might also be made to visual stimuli
with separable dimensions-like the pictures of cups and mugs studied by Labov
(1973) - and to concepts with known dimensionality like colour terms.

How does the spatial model capture intransitivity and superordination? As
in the case of the Attribute Free Prototype, superordination is achieved by
drawing a region of inclusion around a prototype tightly for a subclass and more
widely for a superordinate. Figure 2 illustrates a simple example for a two-
dimensional stimulus space. Classes are represented by bounded regions of
space, while instances are represented as points.

e

Figure 2. Class hierarchy of spatial prototype classes.

If strict class inclusion is required, then the same constraint applies as in the
attribute free prototype model, except that what was before termed distortion
level, now becomes translated into “distance”. Thus B will be a proper subset
of A, provided that the distance from A to B, plus the range of the criterion
defining class membership for B is less than or equal to the range of the criterion
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defining class membership for A. If intransitivity needs to be modelled, then
this can be achieved by again assuming that subjects are basing superordination
judgments on the inclusion of the prototype for B, rather than the region for B,
within theregion for A. In Figure 2, B1 represents a subclass of A thatis a proper
subset of A, while B2 represents a “subclass” which would allow intransitive
superordination.

The spatial model suffers the same problems as the distortion based model
described above. The system will once again break down if a prototype for a
subclass is allowed too close to the superordinate prototype. If the superordinate
prototype falls within the region of inclusion of the subclass, then the asymmetry
of superordination is lost. As was stated before, there appears to be no
intuitively acceptable way to motivate a constraint that prevents any subclass
prototype from being less than a certain distance from the superordinate
prototype, (A corollary of this constraint would be to require that the more
typical a subclass is, then the narrower its criterion for membership must be.)

In addition to this problem, Tversky and Gati (1982) have shown that there
are many problems with the spatial dimensional representation of similarity
(for example with the triangle inequality and symmetry constraints), and their
critique would apply equally well to similarity-based categorisation models
using a spatial representation. The assumptions involved in mapping similarity
onto distance in a space are frequently violated in actual similarity data. For
example Rips, Shoben and Smith (1973) asked subjects to make pairwise
judgments among a set of bird names. Included in the list was the category label
BIRD. Rips et al. found that similarity of each instance to the category name
BIRD wasactually greaterthan any of the pairwise instance-instance similarities.*
Mapping the superordinate and the subclasses into the same space thus
introduced a considerable amount of distortion into the data. Recent work on
similarity by Gentner, Goldstone, Markman, Medin and colleagues has made
itclearthat similarity judgments frequently involve complex cognitive processes
involving alignment of properties, and consideration of relations between
properties as well as simple matches (Goldstone et al. 1991; Markman &
Gentner, 1990). We should therefore expect that many stimuli are not going to
be well modelled by the simple dimensional approach.

Featural models. The third model of prototype representation proposes that
a prototype is a list of features. These features may be thought of as predicates
which can be true or false. As applied to semantic category concepts, the feature
list captures the spirit of the original “family resemblance” model of Rosch and

*To be strict, the subjects were making judgments about similarity of subclasses rather than
actual instances.
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Mervis. Similarity to the prototype can be found by counting the number of
overlapping features between prototype and instance.

One variation on the model (see for example Smith et al., 1988) is to sum the
overlapping features and then to subtract the number of distinctive features
possessed by one but not the other prototype, in line with Tversky’s (1977)
contrast model of similarity. Under most circumstances, adding a distinctive
feature to one but not the other of a pair of stimuli should reduce their similarity.
There are two possible kinds of distinctive feature to consider. First there are
those which are true of the category prototype but not of the instance. Since for
the simple feature list model, the number of category prototype features and
their weight is fixed, then the number of these distinctive features is simply the
remainder once the matching features have been taken into account, and so
subtracting these features adds nothing to the determination of relative similarity
of instances to the same category prototype. We can therefore safely ignore
these in our computation of similarity. The second type of distinctive feature
is a feature which is true of the instance but not of the prototype. Whether or
not such features contribute to dissimilarity of an instance to the prototype and
hence affect categorization has not been directly studied. If the contrast model
is correct and applicable to similarity-based categorization, then one would
expect that an instance will be rendered less typical (and less likely to belong)
in a category if it possesses distinctive features that are not part of the
superordinate prototype - even if the features are irrelevant to category
membership. Thus an instance which has some additional specific feature
should be considered less typical than another instance which does not.

In standard artificial concept learning tasks the prototype is usually defined
as the instance (or point in the stimulus space) with maximum average
similarity to the others in the category. If stimuli are defined in terms of feature
lists the prototype will usually be defined as the combination of all the features
that occur more frequently amongst category members than in non-members.
It is common (and probably important) to include differential weighting for the
features, so that those which are more predictive of category membership will
receive a higher weight than those that are less predictive. Similarity of an
instance x to a category prototype C is then defined as:

Sim(x,C) = Sum over (i=1 to n) features of C (w, . f, (x) )
where f(x) is the degree to which instance x has the ith feature of C, and w, is
the weight of the ith feature of C. There may of course be other functions for
combining feature matches and mismatches into a similarity measure (Hampton,

1995).

How does the feature model deal with the issues of intransivity and
superordination? Feature overlap as a measure doesn’t automatically provide
the asymmetry required for a notion of superordination. A chair is a kind of
furniture, but furniture is NOT a kind of chair, yet both judgments would
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depend on the same degree of feature overlap. Nor can we introduce
superordination by a relaxation of the similarity criterion based on the same
feature set - for example that an object is a CHAIR if it has 8/9 features of the
chair prototype, whereas it can be FURNITURE with only 5/9 of the same
features. Both CHAIR and FURNITURE would be represented by all 9
features, so that we could not rule out “Furniture is a kind of chair”. This is the
same problem that was identified for the attribute-free and spatial models.
To represent feature prototype categories, I will use letters to represent
individual features, and a number in brackets which indicates how many of
those features must be present for an instance to fall in the category. Thus for
example ABC(2) refers to a prototype conceptin which any instance possessing
atleast 2 of the features A, B or C will be considered a category member. A very
direct way to generate superordination with a feature list representation is to
require that the superordinate feature list be always shorter than the number of
features needed for inclusion in the subclass. For example suppose that a
superordinate concept was represented as ABCD(3), and that a particular
subclass was ABCEFG (5). The asymmetry of superordination is guaranteed
simply because the subclass needs 5 features present, whereas the superordinate
can never have more than 4 itself. In practice this constraint would involve a
rule for class inclusion judgments of the following kind:
A subclass is included in the superordinate if the two prototypes share a
sufficient number of features to satisfy the superordinate’s required number,
AND the number of features required to belong to the subclass is greater
than the total number of superordinate features.
Without this constraint, a superordinate class and a maximally typical subclass
will have enough features in common to enable the superordination to be
reversed.

As a constraint on concept representation, this proposal has a greater
intuitive appeal than the constraints needed for the Attribute Free and
Dimensional Prototype models. Subclass concepts tend naturally to be more
specific and less general (i.e., to have more features), and to have a tighter set
of criteria (higher number of features required to belong). The constraint is
reminiscent of the familiar taxonomic structure of concept hierarchies such as
the Linnaean system for classification of biological kinds. Each lower level
introduces new features not found at the superordinate level. The difference
from a traditional taxonomy is that we do not require that instances possess all
the features in order to belong in a class. '

How does the featural model handle intransitivity? The answer is that
intransitivity falls quite naturally out of the feature representation. Forexample
the instance ACEFGHX belongs to ABCEFG(5) but not to ABCD(3), even

_ though the prototype ABCEFG does belong to ABCD(3). In order to ensure

proper class inclusion the subclass concept would have to be such as to fully
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entail the superordinate concept. For the same superordinate ABCD(3), a
subclass such as ABCDE(4) would have this property, since any instance that
has at least four out of ABCDE must have at least 3 outof ABCD. In general,
(and assuming that for both concepts the number of required features is less
than the total number) proper class inclusion requires that all the superordinate
features are also represented in the subclass prototype, and that the number of
required features increases by one for each additional feature represented in the
subclass prototype. Hence, ABCDEF(5) or ABCDEFG(6) would also be
proper subsets of ABCD(3).

The critical change which has been introduced for the Feature Model, and
which was lacking in the first two models, is the notion of abstraction. Fewer
features for superordinates means that some information is left unspecified.
Representational models in which prototypes are just particular points in the
stimulus space (or transformation network) are unable to represent abstraction
of this kind.

Attribute-value based prototypes. Probably the most commonly recognised
version of PTC is the attribute-value model. It remains true to the original
notions of PTC in the ability to represent concepts for which there is no classical
conjunctive definition, but introduces a more powerful representational me-
dium. Some kinds of features are not best represented as simple binary (present/
absent) features, but are better thought of in terms of contrastive sets - LARGE
and SMALL for example, or different shades of colour. In the attribute-value
based prototype model, attributes are variables which can take values which are
either points or ranges on continuous dimensions, or more simply a range of
possible values for some multi-valued variable feature. A motor vehicle can run
on diesel, petrol, butane gas or electricity from batteries. This can be therefore
represented as an Attribute FUEL and its possible range of values {diesel,
petrol, butane, electricity}. The fact that apples can be red, green, brown or
yellow, could similarly be represented as COLOUR{red, green, brown, yellow].

The advantage of representing intensional information in this more structured
format is obvious when one considers simple intersective adjectival modification
of noun concepts of the kind studied by Smith and Osherson (1984). Ared apple
will no longer be green or brown or yellow, but it may still be sweet or sour,
Jarge or small, ripe or unripe. The attribute value model provides a direct way
of representing the fact that a feature of RED(+) rules out the possibility of other
colour features being positive, but has relatively little effect on other features.
A die-hard feature lister might argue that one can get contrast set information
directly from the conceptual representation of RED and GREEN themselves,
rather than needing it to be built in to the prototype representation for Apple.
If it is generally true that RED things are not GREEN, then it would not be
necessary to represent the contrastive nature of red and green in the attribute
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information for every coloured object. To argue for the attribute-value proto-
type model it would then be necessary to show that the relevant contrast set
varies from concept to concept. Otherwise the knowledge that red apples are
not green and that diesel cars do not take petrol could be generated as an
inference from more general knowledge, and need not be part of the concept
representation itself. '

Another difference between the feature and the attribute value models is that
similarity asymmetry is generated at the attribute level itself, without the need
for the rather complex constraints on the numbers of features and required
levels of match that were necessary for superordination under the feature
model. It is assumed that both category and instance will be represented by the
same set of attributes. However the category will tend to have a range of
possible values for each attribute, whereas the instance has only one value for
each attribute. This attribute level mechanism for asymmetrical feature match
was firstintroduced in semantic memory models in McCloskey & Glucksberg’s
property comparison model (1979).

Superordination is achieved by introducing a requirement for a set inclusion
relation between the range of allowable values for subset and superordinate if
the attribute is to be counted as a match. Subclasses may have the same
attributes as their superordinate, but they will have a narrower range of values
for at least some attributes. Thus FRUIT could have a wide range of colours,
but LEMON will be just green or yellow. When computing overlap for
similarity, the attribute of colour gives a positive match for LEMON IS A
FRUIT, but a mismatch for FRUIT IS A LEMON. The representation thus
provides a mechanism for rendering feature overlap asymmetrical, and so
allowing similarity based on overlap to be used as a basis for asymmetrical
superordination judgments.

Note that if all the possible colours of FRUIT were represented as features
rather than as a single attribute with multiple values, the first asymmetry
mechanism would tend to fail - there would be too many FRUIT features, most
of which would be false of any subordinate. Hence there would be a lot of extra
“distinctive” superordinate features which (as we saw above) would tend to
increase similarity of the superordinate to the subordinate rather than the
desired reverse effect. The attribute-value approach neatly resolves apparently
contradictory intuitions about whether superordinate concepts have a larger or
smaller number of features than subordinates. As more abstract concepts they
should have fewer features, but on the other hand they appear to have a much
widerrange of diversity which one would want to represent. The solution to this
paradox is that superordinate concepts have the same number of attributes but
a greater number of possible values for those attributes.

The version of the attribute-value model presented here stops short of what
Barsalou and Hale (1993) call a simple frame representation, in that there are
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no “structural invariants” included in the representation - that is information
about how the attributes relate to each other, such as the configuration of
different parts, or the relation of structure to function-and behaviour. Such
information can (and needs to) be added to the model in order to provide an
adequate account of people’s conceptual knowledge, but it would not normally
affect the predictions of the model as regards classification and other performance
measures, in that the structural invariants are likely to remain constant across
instances, and so have little influence on categorization data.

In formal terms an Attribute-value prototype consists of a set of attributes
and their associated weighted values. Similarity to the category prototype C for
an instance x is defined as

Similarity(x,C) = Sum over (i=1 to n) attributes in the category prototype of

{ w(xi)}
where w(x,i) is the weight in C given to whichever value of the ith attribute is
possessed by the putative category member x. Note that this similarity measure
incorporates the McCloskey and Glucksberg asymmetry mechanism. It sums
over attributes rather than their values, and so recognises that an instance can
not possess more than one of a set of mutually contrasting attribute values of
the concept prototype.

The model has to be extended to deal with superordination judgments, as
opposed to instance categorization. The difference between an instance and a
class, intensionally, is that the class may have a range of possible attribute
values, each with their own weight, whereas an instance just has one value for
each attribute. In the above equation, it is considered unproblematic to
determine which value of an attribute is possessed by the instance x. To
generalise the model to subclasses and introduce superordination, we need to
take account of the distribution of weights across the attribute values for both
the subordinate and the superordinate concept prototypes. (Recall that it is
taken as axiomatic that Prototype Theory must account for superordination
through the comparison of the prototypes of the subclass and superordinate
alone.)

The similarity between a subclass prototype and a superordinate prototype
will be a function of matching across a number of attributes, which can be
assumed to be the same for each prototype. Similarity must then be computed
within each attribute, on the basis of the match of the range of values for each
prototype. A set of attribute values can be represented as a vector of value
weights, corresponding to the weight of any particular value for that attribute
in that class prototype (see for example Smith et al. 1988). It is not as obvious
as it might at first sight appear exactly how one might achieve the asymmetry
in attribute matching necessary for superordination, solely on the basis of
comparison of the two weight vectors for the values of any particular attribute.
For example the cross product of the two vectors gives a good measure of
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match, but it is unfortunately symmetrical, so that when summed across
attributes it will give the same degree of match for subclass to superordinate as
vice versa. The following proposal is one which aims to generalize the principal
of the McCloskey and Glucksberg model to a more formal quantitative model
in which attribute values can carry differential weights.

For a superordinate class S, and a subclass C, similarity of the subclass
prototype to the superordinate prototype (upon which categorization will
depend) is initially defined as the sum of degree of match across attributes, in
the same way as in the feature model:

Sim (C,S) = Weighted Sum across attributes in S (degree of Match M)
We then need a way to determine for any attribute in S, the degree M to which
the two value vectors match. Because we have weights for the attributes as a
whole, we can arrange that the sum of value weights within each attribute is
some constant.® Degree of value match is then determined by calculating the
sum of the cross product of the two value vectors, and dividing by the sum of
squared value weights for the superordinate vector.®
Thus for each attribute in the superordinate S, the degree of value match
between the vectors v_and v_for that attribute is defined as:

Match M = (v, v J/(v.v)

Table 3 shows an example of how this proposal would compute the contribution
to the similarity between LEMON and FRUIT resulting from the range of
values that each has. Asymmetry in the comparison of values is achieved by the
division by the sum of squared values of the superordinate. Since the subclass
will generally tend to have a narrower range of values, so the weights will be
more concentrated on a few values. Hence the sum of squared value weights
will be greater for the subclass than for the superordinate. (There is a direct
parallel here with the statistical formula for a linear regression coefficient,
which is defined as the covariance, divided by the variance of the independent
variable. Effectively M is a measure of the predictability of the instance from
the superordinate weight vector.)

* Alternatively, attributes could be given equal weight, and the sum of value weights within an
attribute chosen to reflect the importance of different attributes in the computation of similarity.

5A different solution would be todivide by the number of non-zero values in the subclass vector,
‘This however would require determining when a value was non-zero, which introduces a
discontinuity into an otherwise continuous function.
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Table 3
Example of How the Algorithm for Computing Value Vector Match Generates Asymmetric Similarity
Berween a Subclass and a Superordinate

Colour [Red Green  Yellow Orange Brown  Purple Blue]
FRUIT B 2 1 1 1 1 0
LEMON 0 1 9 0 0 0 0

Sum of cross products = (4x0)+(2x 1 )+{1x9)+(1x0)+(1x0)+(1x0)+(0x0) = 11

Sum of Fruit vector squared = (4x4)+(2x2)+(1x 1)+(1x )+(1x1)+(1x1)+(0x0) = 24
Sum of Lemon vector squared = (0x0)+(1x1)+(9x9)+(0x0)+(0x0)+(0x0)+(0x0) = 82
Similarity from the colour attribute for Lemon as a kind of Fruit = 11/24 = 0.46

Similarity from the colour attribute for Fruit as a kind of Lemon = 11/82=0.13

Conclusions

In this paper, I have analyzed the basic notion of a prototype and have
considered four different levels of prototype répresentation. The analysis has
considered how each mddel defines similarity to a prototype and whether and
how it is possible to explain the asymmetry of superordination purely in terms
of the comparison of the two concept prototypes representing the subclass and
the superordinate. The first two models, based respectively on unanalyzed
prototype templates and on dimensional representations turned out to be fatally
flawed. Because the prototype is no more abstract than any particular instance,
there is no principled way of ruling out reversed categorisations - the false
conclusion that the superordinate is a kind of the subclass. Within the feature
list and the attribute value approaches this flaw can be rectified - in the first case
by reducing the number of features for superordinates, and reducing the amount
of overlap needed for superordinate categories compared with subordinates,
and in the second case by introducing value vectors for attributes and a
matching algorithm that computes match for each attribute as the sum of the
product of the value weight vectors over the sum of the squared value weight
vector for the superordinate.

There still remain many unresolved issues. A particularly difficult problem
is to decide on the degree to which general knowledge should be contained
within the representation of concepts, as opposed to an extra-conceptual
memory system. The attribute-value representation moves some way towards
a more knowledge-intensive representation of concepts, in that it allows one to
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represent the contrastive nature of attribute values - if an apple is red, then one
caninferthatitis not green, if a car runs on gasoline then it does not run on diesel
fuel. While the ability to capture such inferences at the conceptual level may
seem an advantage, one needs to beware of treating it as a universal aspect of
attribute value representations. For example, the MEANS OFLOCOMOTION
attribute of birds can take values such as HOPS, WADDLES, FLIES, SWIMS.
However, the values do not constitute a simple contrastive set -birds generally
either hop (like a sparrow) or waddle (like a penguin), but this is independent
of whether they fly or swim as well. It may therefore be better to leave the
knowledge of which values are contrastive, and which are not, to an extra-
conceptual knowledge representation system. Concepts may be deeply
embedded in theory (Murphy & Medin, 1985), but there may be some
advantage in retaining a simple representational form for individual concepts,
and placing more complex information in a higher level general knowledge
memory store.
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