Linear Algebra: Exercise Sheet 1

- 1. Show that P_n , the set of all polynomials in one variable with real coefficients, with the usual addition and scalar multiplication of polynomials, is a vector space over \mathbb{R} .
- 2. Show that M(2, 2), the set of all 2×2 matrices with real entries, with the usual addition and scalar multiplication of matrices, form a vector space over \mathbb{R} .
- 3. Which of the following subsets are subspaces of \mathbb{R}^2 ?
 - (a) $\{(x,0) \in \mathbb{R}^2 \mid x \in \mathbb{R}\}$
 - (b) $\{(x,y) \in \mathbb{R}^2 \mid x, y \text{ are integers}\}$
 - (c) $\{(x, y) \in \mathbb{R}^2 \mid x \le y\}$
 - (d) $\{(x, y) \in \mathbb{R}^2 \mid x^2 = y^2\}$
 - (e) $\{(x, y) \in \mathbb{R}^2 \mid y = 2x\}$
- 4. Which of the following subsets are subspaces of the vector space $\mathbb{R}^{\mathbb{R}}$ consisting of all functions $f : \mathbb{R} \to \mathbb{R}$?
 - (a) $\{f \in \mathbb{R}^{\mathbb{R}} \mid f(0) = f(1)\}$
 - (b) $\{f \in \mathbb{R}^{\mathbb{R}} \mid f(x) \ge 0 \quad \forall x \in \mathbb{R}\}$
 - (c) $\{f \in \mathbb{R}^{\mathbb{R}} \mid f(x) = f(-x) \quad \forall x \in \mathbb{R}\}$ (i.e. the subset of all even functions)
- 5. Which of the following subsets are subspaces of P_n ?
 - (a) $\{a_0 + a_1x + a_2x^2 + \ldots + a_nx^n \in P_n \mid a_0 + a_1 + a_2 + \ldots + a_n = 0\}$
 - (b) the set of all polynomials of degree exactly n.
 - (c) the set of all polynomials $p(x) \in P_n$ satisfying p(0) = 0.
- 6. Which of the following subsets are subspaces of M(2,2)?
 - (a) the set of all 2×2 matrices of the form $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$ for some $a, b, c \in \mathbb{R}$ (b) the set of all 2×2 matrices of the form $\begin{pmatrix} a & 1 \\ 0 & c \end{pmatrix}$ for some $a, c \in \mathbb{R}$

(c)
$$\left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M(2,2) \mid ad - cb = 4 \right\}$$

7. (optional) Is \mathbb{C}^n a vector space over \mathbb{R} ? Justify your answer. Is \mathbb{R}^n a vector space over \mathbb{C} ? Justify your answer.