Linear Algebra: Exercise Sheet 2

- 1. Which of the following sets are linearly independent, which ones are spanning sets for \mathbb{R}^3 and which ones form a basis for \mathbb{R}^3 ?
 - (a) $\{(1,0,0), (5,5,0), (3,3,3)\}$
 - (b) $\{(2,5,4), (-2,1,0)\}$
 - (c) $\{(-3,2,1), (0,0,0), (1,2,-3)\}$
 - (d) $\{(1,1,1), (6,2,4), (7,3,5)\}$
 - (e) $\{(1,0,0), (1,1,0), (1,1,1), (-1,5,2)\}$
 - (f) $\{(1,0,0), (2,0,0), (3,0,0), (4,0,0)\}$
- 2. Which of the following sets are linearly independent, which ones are spanning sets for P_2 and which ones form a basis for P_2 ?
 - (a) $\{1, 1+x, 1+x+x^2\}$
 - (b) $\{3 + x x^2, 2 + 2x + x^2, -1 + x + 2x^2\}$
 - (c) $\{1 + x + x^2, 1, x, 14x^2\}$
- 3. Let f, g, h be elements of the real vector space $\mathbb{R}^{\mathbb{R}}$ given by $f(x) = \sin x$, $g(x) = \cos x$, h(x) = x. Show that $\{f, g, h\}$ is a linearly independent set. What is the dimension of the subspace of $\mathbb{R}^{\mathbb{R}}$ spanned by f, g and h?
- 4. Find a basis for the subspace U of P_n consisting of all polynomials $p(x) \in P_n$ satisfying p(0) = 0. What is the dimension of U?
- 5. Find a basis for the vector space $V = \{(x, y, z, t) \in \mathbb{R}^4 \mid x + y = z, x y = t\}$ and hence find the dimension of V.
- 6. (optional) Show that the vector space P of *all* polynomials in one variable is infinite dimensional, i.e. show that it cannot be spanned by a finite number of vectors.