Linear Algebra: Exercise Sheet 7

- 1. Use the Gram-Schmidt process to construct orthonormal bases for \mathbb{R}^3 (with usual dot product) starting from the following bases:
 - (a) $\{(1,0,0), (1,1,0), (1,1,1)\}.$
 - (b) $\{(2,0,3), (-1,0,5), (10,-7,2)\}.$

Write the vector (7, 4, -2) as a linear combination of each of the new bases.

2. Use the Gram-Schmidt process to contruct an orthonormal basis for M(2,2) with inner product given by $\langle A, B \rangle = tr(B^T A)$ starting from the basis

$$\left\{ \left(\begin{array}{rrr} 1 & 1 \\ 1 & 1 \end{array}\right), \left(\begin{array}{rrr} 1 & 1 \\ 1 & 0 \end{array}\right), \left(\begin{array}{rrr} 1 & 1 \\ 0 & 0 \end{array}\right), \left(\begin{array}{rrr} 1 & 0 \\ 0 & 0 \end{array}\right) \right\}.$$

Write the matrix $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ as a linear combination of these new basis vectors.

- 3. Use the Gram-Schmidt process to contruct an orthonormal basis for P_2 with inner product given by $\langle p(x), q(x) \rangle = p_0 q_0 + p_1 q_1 + p_2 q_2$ (where $p(x) = p_0 + p_1 x + p_2 x^2$ and $q(x) = q_0 + q_1 x + q_2 x^2$) starting with the basis $\{2 + 3x^2, 5x^2 1, 10 7x + 2x^2\}$.
- 4. Use the Gram-Schmidt process to construct an orthonormal basis for P_2 with inner product $\langle p(x), q(x) \rangle = \int_{-1}^{1} p(x)q(x)dx$ from the basis $\{1, x, x^2\}$. The resulting basis elements are called the first three (normalized) Legendre polynomials. Write the vector $x^2 2x + 3$ as a linear combination of the new basis vectors.
- 5. (optional) An $n \times n$ matrix A is called orthogonal if $A^T A = I$ (the identity matrix). Show that
 - (a) A is orthogonal if and only if its columns (resp. its rows) form an orthonormal set of vectors in \mathbb{R}^n (with the usual dot product).
 - (b) If A is orthogonal then $(A\mathbf{x}) \cdot (A\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.
 - (c) If A is orthogonal then $||A\mathbf{x}|| = ||\mathbf{x}||$ for all $\mathbf{x} \in \mathbb{R}^n$.

Interpret (b) and (c) geometrically.