
Linear Algebra: Solutions to Coursework 1

1. (a) U = {(x1, x2, x3, x4) ∈ R4 | x1 + x4 = 0} is a subspace of R4. In order to prove it, we
need to check conditions (S1),(S2) and (S3).
(S1) (0, 0, 0, 0) ∈ U , as x1 + x4 = 0 + 0 = 0.
(S2) If (x1, x2, x3, x4), (x′

1, x
′
2, x

′
3, x

′
4) ∈ U , i.e. x1 + x4 = 0 and x′

1 + x′
4 = 0, then

(x1, x2, x3, x4) + (x′
1, x

′
2, x

′
3, x

′
4) = (x1 + x′

1, x2 + x′
2, x3 + x′

3, x4 + x′
4) ∈ U

as
(x1 + x′

1) + (x4 + x′
4) = (x1 + x4) + (x′

1 + x′
4) = 0 + 0 = 0.

(S3) If (x1, x2, x3, x4) ∈ U and λ ∈ R then

λ(x1, x2, x3, x4) = (λx1, λx2, λx3, λx4) ∈ U

as (λx1) + (λx4) = λ(x1 + x4) = λ0 = 0.

(b) U = {
(

a b
c d

)
| a + b = c + d} is a subspace of M(2, 2). In order to prove it, we need

to check conditions (S1),(S2) and (S3).

(S1)
(

0 0
0 0

)
∈ U as 0 + 0 = 0 + 0.

(S2) If
(

a b
c d

)
,

(
a′ b′

c′ d′

)
∈ U then

(
a b
c d

)
+

(
a′ b′

c′ d′

)
=

(
a + a′ b + b′

c + c′ d + d′

)
∈ U

as (a + a′) + (b + b′) = (a + b) + (a′ + b′) = (c + d) + (c′ + d′) = (c + c′) + (d + d′).

(S3) If
(

a b
c d

)
∈ U and λ ∈ R then

λ

(
a b
c d

)
=

(
λa λb
λc λd

)
∈ U

as (λa) + (λb) = λ(a + b) = λ(c + d) = (λc) + (λd).

(c) U = {f ∈ RR | f(0) = 1} is not a subspace of RR. It is enough to show that one
condition fails. Take for example (S1). The zero vector is the zero function θ : R → R
defined by θ(x) = 0 for all x ∈ R. In particular, θ(0) = 0 6= 1, thus θ /∈ U .

2. (a) U ∩W is always a subspace of V . In order to prove it we need to show that (S1),(S2)
and (S3) are satisfied.
(S1) As the zero vector 0 ∈ U and 0 ∈ W , we have 0 ∈ U ∩W .
(S2) Take v,u ∈ U ∩ W . In particular, v,u ∈ U so (as U is a subspace) we have
v + u ∈ U . But also v,u ∈ W so (as W is a subspace) we have v + u ∈ W . Thus we
have v + u ∈ U ∩W .
(S3) Take v ∈ U ∩W and λ ∈ R. In particular, v ∈ U , so (as U is a subspace) we have
λv ∈ U . But also v ∈ W , so (as W is a subspace) we have λv ∈ W . Thus we have
λv ∈ U ∩W .
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(b) U ∪W is not always a subspace of V . Take for example V = R2, U = {(x, 0) | x ∈ R}
and W = {(0, y) | y ∈ R}. Then it is easy to check that U and W are subspaces of V .
However, U ∪ W = {(x, y) ∈ R2 | x = 0 or y = 0} is not a subspace of V . How to see
that? Show for example that (S2) fails. Take (1, 0) ∈ U ∪W and (0, 1) ∈ U ∪W , then
(1, 0) + (0, 1) = (1, 1) /∈ U ∪W .

3. (a) As this set contains 4 vectors and dim R3 = 3 this set cannot be linearly independent
(using Corollary 1.24 from the lecture), in particular, it is not a basis. Is it spanning?
To check this, we need to check whether we can write any vector (x, y, z) ∈ R3 as a linear
combination of these vectors, i.e. we want to find some λ1, λ2, λ3 and λ4 (depending on
x, y, z) satisfying

(x, y, z) = λ1(0, 0, 1) + λ2(1, 0, 1) + λ3(0, 1, 0) + λ4(−1,−1, 0).

This is equivalent to the following system of linear equations
x = λ2 − λ4

y = λ3 − λ4

z = λ1 + λ2

Solving this system we get λ1 = z − x − λ4, λ2 = x + λ4, λ3 = y + λ4 and λ4 can be
any real number. So we could take for example λ4 = 0, λ1 = z − x, λ2 = x and λ3 = y.
Thus this set is a spanning set for R3.

(b) As this set contains 3 vectors and dim R4 = 4 this set cannot be spanning (using Corollary
1.24 from the lecture), in particular, it is not a basis. Is it linearly independent? Write

λ1(0, 0, 0, 1) + λ2(3, 0, 1, 0) + λ3(5, 4, 3,−2) = (0, 0, 0, 0).

Does this equation implies that λ1 = λ2 = λ3 = 0? Rewrite this equation as
0 = 3λ2 + 5λ3

0 = 4λ3

0 = λ2 + 3λ3

0 = λ1 − 2λ3

The only solution to this system of linear equation is λ1 = λ2 = λ3 = 0. Thus this set
is linearly independent.

(c) Is this set linearly independent?

λ1(3) + λ2(2− x) + λ3(4 + x− x2) = 0

Does this implies that λ1 = λ2 = λ3 = 0? We have

(3λ1 + 2λ2 + 4λ3) + (−λ2 + λ3)x + (−λ3)x2 = 0

so 
0 = 3λ1 + 2λ2 + 4λ3

0 = −λ2 + λ3

0 = −λ3

But the only solution to this system is λ1 = λ2 = λ3 = 0. Thus this set is linearly
independent.
Now, as dim P2 = 3 and we have a set containing 3 linearly independent vectors, it is
automatically a basis (and hence also a spanning set), using Corollary 1.24 from the
lecture.
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4. (a) This map is linear. In order to prove it we need to check the following two conditions.
(i) f(p(x) + q(x)) = f(p(x)) + f(q(x)) for all p(x), q(x) ∈ Pn.
Now

f(p(x) + q(x)) = x2 d

dx
(p(x) + q(x))

= x2(
d

dx
(p(x)) +

d

dx
(q(x)))

= x2 d

dx
(p(x)) + x2 d

dx
(q(x))

= f(p(x)) + f(q(x)).

(ii) f(λp(x)) = λf(p(x)) for all p(x) ∈ Pn and all λ ∈ R.
Now

f(λp(x)) = x2 d

dx
(λp(x)) = x2λ

d

dx
(p(x)) = λ(x2 d

dx
(p(x))) = λf(p(x)).

(b) This map is not linear. In order to prove it is it enough to show that one of the two
conditions fails. Take for example (i). Pick (0, 0, 1) and (1, 1,−1) then

f((0, 0, 1) + (1, 1,−1)) = f(1, 1, 0) = (1 + 1)0 = 0

but
f(0, 0, 1) + f(1, 1,−1) = (0 + 0)1 + (1 + 1)(−1) = −2

showing that (i) fails.

5. (a) No there isn’t such a linear map as if there were one then we would have

f(4, 2) = f(2(1, 1)+(2, 0)) = 2f(1, 1)+f(2, 0) = 2(1, 0, 0)+(1, 2, 3) = (3, 2, 3) 6= (0, 0,−5).

(b) Using the calculation above we see that there is such a linear map. To find f(x, y), first
write

(x, y) = a(1, 1) + b(2, 0) = (a + 2b, a)

Thus we must have a = y and b = 1
2(x− y). Now

f(x, y) = f(y(1, 1) +
1
2
(x− y)(2, 0))

= yf(1, 1) +
1
2
(x− y)f(2, 0)

= y(1, 0, 0) +
1
2
(x− y)(1, 2, 3)

= (
1
2
(x + y), x− y,

3
2
(x− y)).
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