Linear Algebra: Solutions to Exercise Sheet 1

Remark on notation:

"{X}" means "the set of all X's". "{X | Y}" means "the set of all X's satisfying condition Y". " $\forall X$ " means "for all X's". " $x \in Y$ " means "x belongs to the set Y. " $x \notin Y$ " means "x does not belong to the set Y.

1. P_n is the set of all polynomials $p(x) = a_0 + a_1 x + \ldots + a_n x^n$ with $a_0, a_1, \ldots, a_n \in \mathbb{R}$, with addition given by

$$(a_0+a_1x+\ldots+a_nx^n)+(b_0+b_1x+\ldots+b_nx^n) = (a_0+b_0)+(a_1+b_1)x+\ldots+(a_n+b_n)x^n \in P_n$$

and scalar multiplication given by

$$\lambda(a_0 + a_1x + \ldots + a_nx^n) = (\lambda a_0) + (\lambda a_1)x + \ldots + (\lambda a_n)x^n \in P_n$$

for $\lambda \in \mathbb{R}$.

We need to check that (V1)-(V8) are satisfied. (V1): (p(x) + q(x)) + r(x) = p(x) + (q(x) + r(x)) for all $p(x), q(x), r(x) \in P_n$ is clear. (V2): p(x) + q(x) = q(x) + p(x) for all $p(x), q(x) \in P_n$ is also clear. (V3): The zero vector is given by the zero polynomial $0 = 0 + 0x + \ldots + 0x^n$. (V4): For each $p(x) \in P_n$, its negative is given by $-p(x) = (-a_0) + (-a_1)x + \ldots + (-a_n)x^n$. $(V5): \lambda(p(x) + q(x)) = (\lambda p(x)) + (\lambda q(x))$ for all $\lambda \in \mathbb{R}$ and all $p(x), q(x) \in P_n$. (V6)-(V8): are similar.

2. M(2,2) is the set of all 2×2 matrices with real entries with addition given by

$$\begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix} + \begin{pmatrix} a_2 & b_2 \\ c_2 & d_2 \end{pmatrix} = \begin{pmatrix} a_1 + a_2 & b_1 + b_2 \\ c_1 + c_2 & d_1 + d_2 \end{pmatrix}$$

and scalar multiplication given by

$$\lambda \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) = \left(\begin{array}{cc} \lambda a & \lambda b \\ \lambda c & \lambda d \end{array} \right)$$

for $\lambda \in \mathbb{R}$.

We need to check the 8 axioms.

- (V1): For all matrices $A, B, C \in M(2, 2)$ we have (A + B) + C = A + (B + C).
- (V2): For all $A, B \in M(2, 2)$ we have A + B = B + A.
- (V3): The zero vector is given by the zero matrix $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.
- (V4): For any matrix A, its negative is given by $-\dot{A} = (-1)A$.

(V5): $\lambda(A + B) = (\lambda A) + (\lambda B)$ for any $A, B \in M(2, 2)$ and any $\lambda \in \mathbb{R}$. (V6)–(V8): can be verified similarly.

Important remark: We can generalize the above argument to show that in fact the set M(n,m) of all $n \times m$ matrices with real entries, with the usual addition and scalar multiplication of matrices, form a vector space over \mathbb{R} .

- 3. (a) U = {(x,0) | x ∈ ℝ} is a subspace of ℝ². In order to prove it, we need to show that U satisfies the three conditions (S1), (S2) and (S3).
 (S1): (0,0) ∈ U (take x = 0).
 (S2): If (x,0) ∈ U and (y,0) ∈ U then (x,0) + (y,0) = (x + y,0) ∈ U.
 (S3): If λ ∈ ℝ and (x,0) ∈ U then λ(x,0) = (λx,0) ∈ U.
 - (b) $U = \{(x, y) \mid x, y \text{ integers}\}$ is **not** a subspace of \mathbb{R}^2 . In fact, (S3) fails: take $\lambda = \frac{1}{2}$ and $(1, 0) \in U$ then $\frac{1}{2}(1, 0) = (\frac{1}{2}, 0) \notin U$.
 - (c) $U = \{(x, y) \in \mathbb{R}^2 \mid x \leq y\}$ is **not** a subspace of \mathbb{R}^2 . In fact, (S3) fails: take $\lambda = -1$ and $(1, 2) \in U$ then $(-1)(1, 2) = (-1, -2) \notin U$ (as -1 > -2).
 - (d) $U = \{(x, y) \in \mathbb{R}^2 \mid x^2 = y^2\}$ is **not** a subspace of \mathbb{R}^2 . In fact, (S2) fails: take $(1, -1) \in U$ and $(1, 1) \in U$ then $(1, -1) + (1, 1) = (2, 0) \notin U$ as $2^2 = 4 \neq 0$.
 - (e) $U = \{(x, y) \in \mathbb{R}^2 \mid y = 2x\}$ is a subspace of \mathbb{R}^2 . In order to prove it, we need to show that U satisfies the three conditions (S1), (S2) and (S3). $(S1): (0,0) \in U$ as 0 = 2.0. (S2): If $(x_1, y_1) \in U$ (i.e. $y_1 = 2x_1$) and $(x_2, y_2) \in U$ (i.e. $y_2 = 2x_2$) then $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2) \in U$ as $y_1 + y_2 = 2x_1 + 2x_2 = 2(x_1 + x_2)$. (S3): If $\lambda \in \mathbb{R}$ and $(x, y) \in U$ (i.e. y = 2x) then $\lambda(x, y) = (\lambda x, \lambda y) \in U$ as $\lambda y = \lambda(2x) = 2(\lambda x)$.
- 4. (a) $U = \{f \in \mathbb{R}^{\mathbb{R}} \mid f(0) = f(1)\}$ is a subspace of $\mathbb{R}^{\mathbb{R}}$. In order to prove it we need to verify that U satisfies the following three conditions. (S1): The zero function O defined by O(x) = 0 for all $x \in \mathbb{R}$ is in U as O(0) = 0 = O(1). (S2): If $f, g \in U$ i.e. f(0) = f(1) and g(0) = g(1) then (f+g)(0) = f(0)+g(0) = f(1) + g(1) = (f+g)(1) so $(f+g) \in U$. (S3): If $\lambda \in \mathbb{R}$ and $f \in U$ i.e. f(0) = f(1) then $(\lambda f)(0) = \lambda(f(0)) = \lambda(f(1)) = (\lambda f)(1)$. So $(\lambda f) \in U$.
 - (b) $U = \{f \in \mathbb{R}^{\mathbb{R}} \mid f(x) \ge 0 \quad \forall x \in \mathbb{R}\}$ is **not** a subspace of $\mathbb{R}^{\mathbb{R}}$. Indeed, condition (S3) fails: take $f \in U$ defined by f(x) = 1 for all $x \in \mathbb{R}$, then $(-1)f \notin U$ as ((-1)f)(x) = -1 < 0 for all $x \in \mathbb{R}$.
 - (c) $U = \{f \in \mathbb{R}^{\mathbb{R}} \mid f(x) = f(-x) \quad \forall x \in \mathbb{R}\}$ is a subspace of $\mathbb{R}^{\mathbb{R}}$. As before, to prove this we need to verify the same three conditions. (S1): The zero function O is in U, as O(x) = 0 = O(-x) for all $x \in \mathbb{R}$. (S2): If $f, g \in U$, i.e. f(x) = f(-x) and g(x) = g(-x) for all $x \in \mathbb{R}$, then (f + g)(x) = f(x) + g(x) = f(-x) + g(-x) = (f + g)(-x) for all $x \in \mathbb{R}$. So $(f + g) \in U$. (S3): If $\lambda \in \mathbb{R}$ and $f \in U$, i.e. f(x) = f(-x), then $(\lambda f)(x) = \lambda(f(x)) =$ $\lambda(f(-x)) = (\lambda f)(-x)$ for all $x \in \mathbb{R}$. So $(\lambda f) \in U$.

- 5. (a) $U = \{a_0 + a_1x + \ldots + a_nx^n \in P_n \mid a_0 + a_1 + \ldots + a_n = 0\}$ is a subspace of P_n . In order to prove it, we need to show that U satisfies the three conditions (S1), (S2) and (S3). (S1): the zero polynomial is in U (take $a_0 = a_1 = \ldots = a_n = 0$). (S2): If $a_0 + a_1x + \ldots + a_nx^n \in U$ (i.e. $a_0 + \ldots + a_n = 0$) and $b_0 + b_1x + \ldots + b_nx^n \in U$ (i.e. $b_0 + \ldots + b_n = 0$) then $(a_0 + \ldots + a_n x^n) + (b_0 + \ldots + b_n x^n) = (a_0 + b_0) + \ldots + (a_n + a_n x^n) + (a_n +$ b_n) $x^n \in U$ as $(a_0 + b_0) + \ldots + (a_n + b_n) = (a_0 + \ldots + a_n) + (b_0 + \ldots + b_n) = 0 + 0 = 0.$ (S3): If $\lambda \in \mathbb{R}$ and $a_0 + \ldots + a_n x^n \in U$ then $\lambda(a_0 + \ldots + a_n x^n) = (\lambda a_0) + \ldots + (\lambda a_n x^n)$ $(\lambda a_n)x^n \in U$ as $(\lambda a_0) + \ldots + (\lambda a_n) = \lambda(a_0 + \ldots + a_n) = \lambda \cdot 0 = 0.$
 - (b) The set of all polynomials of degree exactly n is **not** a subspace of P_n . Indeed, condition (S1) is not satisfied as the zero polynomial 0 has degree 0, so it is not in this set. (Can also show that (S2) is not satisfied, as $x + x^n$ and $2x - x^n$ are both polynomials of degree n, so they are in this set, but their sum $(x+x^n)+(2x-x^n)=$ 3x is not a polynomial of degree n.)
 - (c) Note that the set U of all polynomials in P_n satisfying p(0) = 0 is equal to the set of all polynomials of the form $a_1x + a_2x^2 + \ldots + a_nx^n$ (so the independent term $a_0 = 0$). We claim that U is a subspace of P_n . In order to prove it, we need to show that (S1), (S2) and (S3) holds.
 - (S1): The zero polynomial $0 = 0 + 0x + 0x^2 + \ldots + 0x^n$ is in U.
 - (S2): Let $a_1x + a_2x^2 + \ldots + a_nx^n$ and $b_1x + b_2x^2 + \ldots + b_nx^n$ be two polynomials in U, then their sum $(a_1 + b_1)x + (a_2 + b_2)x^2 + ... + (a_n + b_n)x^n$ is still in U.
 - (S3): Let $\lambda \in \mathbb{R}$ and let $p(x) = a_1 x + a_2 x^2 + \ldots + a_n x^n$ be a polynomial in U, then $\lambda p(x) = (\lambda a_1)x + (\lambda a_2)x^2 + \ldots + (\lambda a_n)x^n$ is still in U.

6. (a) Let U be the set of all 2×2 matrices of the form $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$ for some $a, b, c \in \mathbb{R}$. Then U is a subspace of M(2,2). In order to prove it we need to show that conditions (S1), (S2) and (S3) holds.

- (S1): The zero matrix is in U (take a = b = c = 0).
- (S2): If $\begin{pmatrix} a_1 & b_1 \\ 0 & c_1 \end{pmatrix}$ and $\begin{pmatrix} a_2 & b_2 \\ 0 & c_2 \end{pmatrix}$ are in U then their sum $\begin{pmatrix} a_1 & b_1 \\ 0 & c_1 \end{pmatrix} + \begin{pmatrix} a_2 & b_2 \\ 0 & c_2 \end{pmatrix} = \begin{pmatrix} a_1 + a_2 & b_1 + b_2 \\ 0 & c_1 + c_2 \end{pmatrix}$ is in U. (S3): If $\lambda \in \mathbb{R}$ and $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$ is in U then $\lambda \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} = \begin{pmatrix} \lambda a & \lambda b \\ 0 & \lambda c \end{pmatrix}$ is also in U.
- (b) The set U of all matrices of the form $\begin{pmatrix} a & 1 \\ 0 & c \end{pmatrix}$ for some $a, c \in \mathbb{R}$ is not a subspace of M(2,2) as, for example, the zero matrix is not in U, so condition (S1) is not satisfied. (can also show that condition (S2) and (S3) are not satisfied).
- (c) This is not a subspace of M(2,2) as the zero matrix is not in this set, so (S1) is not satisfied. (We could also show that (S2) or (S3) is not satisfied).
- 7. We proved at the lectures that \mathbb{R}^n is a vector space over \mathbb{R} and similarly that \mathbb{C}^n is a vector space over \mathbb{C} . Now, is \mathbb{C}^n a vector space over \mathbb{R} ? The answer is yes. The addition

and the axioms (V1)-(V4) are satisfied just as before. For the scalar multiplication we have that if $\lambda \in \mathbb{R}$ and $\mathbf{z} = (z_1, \ldots, z_n) \in \mathbb{C}^n$ then $\lambda \mathbf{z} = (\lambda z_1, \ldots, \lambda z_n) \in \mathbb{C}^n$ as $\lambda z_i \in \mathbb{C}$ for $1 \leq i \leq n$. Moreover, the axioms (V5)-(V8) are satisfied as before.

Is \mathbb{R}^n a vector space over \mathbb{C} ? The answer is no. The problem lies with the scalar multiplication. If $\lambda \in \mathbb{C}$ and $\mathbf{x} = (x_1, \ldots, x_n) \in \mathbb{R}^n$, then $\lambda \mathbf{x} = (\lambda x_1, \ldots, \lambda x_n)$ is not necessarily in \mathbb{R}^n . For example, take n = 2, $\lambda = i \in \mathbb{C}$ and $\mathbf{x} = (1, 1) \in \mathbb{R}^2$, then $\lambda \mathbf{x} = (i, i) \notin \mathbb{R}^2$.