
Linear Algebra: Solutions to Exercise Sheet 5

1. (a) This is true. If f has eigenvalue λ, then there is some non-zero vector v ∈ V such that
f(v) = λv. Now f−1(f(v)) = f−1(λv) = λf−1(v) as f is linear. On the other hand,
f−1(f(v)) = id(v) = v. Thus we have λf−1(v) = v. As v 6= 0, we must have λ 6= 0
and so we get f−1(v) = λ−1v and v is an eigenvector of f−1 with eigenvalue λ−1.

(b) This is also true. If A has eigenvalue λ then there exists x = (x1, . . . , xn) 6= (0, . . . , 0)
such that Ax = λx. But then Amx = Am−1(Ax) = Am−1(λx) = λAm−1(x) =
λAm−2(Ax) = λAm−2(λx) = λ2Am−2(x) = . . . = λmx. Thus λm is an eigenvalue
of Am.

2. (a) Consider the characteristic equation

det
(

6− λ 4
−1 2− λ

)
= (λ− 4)2 = 0

So the only eigenvalue is λ = 4. Consider the eigenspace sA(4):(
2 4

−1 −2

) (
x
y

)
=

(
0
0

)
.

Thus we get 2x + 4y = 0 (the other equation gives the same condition), so x = −2y and
sA(4) = {(−2y, y) | y ∈ R}. The subspace sA(4) has a basis given by {(−2, 1)} (check).
We cannot find a basis of eigenvectors for R2, so A is not diagonalizable.

(b) Consider the characteristic equation

det
(
−2− λ 0

6 1− λ

)
= (−2− λ)(1− λ) = 0

So the eigenvalues are λ = 1 and λ = −2.
When λ = 1 we get (

−3 0
6 0

) (
x
y

)
=

(
0
0

)
.

Thus we get x = 0 and sA(1) = {(0, y) | y ∈ R}. It has a basis given by {(0, 1)}.
When λ = −2 we get (

0 0
6 3

) (
x
y

)
=

(
0
0

)
.

Thus we get 6x + 3y = 0 and y = −2x, so sA(−2) = {(x,−2x) | x ∈ R}. It has a basis
given by {(1,−2)}.

The change of basis matrix is given by P =
(

0 1
1 −2

)
and P−1 =

(
2 1
1 0

)
and we

have

P−1AP =
(

2 1
1 0

) (
−2 0

6 1

) (
0 1
1 −2

)
=

(
1 0
0 −2

)
.
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(c) Consider the characteristic equation

det

 −λ 0 0
5 5− λ 5
0 0 −λ

 = λ2(5− λ) = 0.

Thus the eigenvalues are λ = 0 and λ = 5.
When λ = 0 we have  0 0 0

5 5 5
0 0 0

  x
y
z

 =

 0
0
0

 .

So we get 5x + 5y + 5z = 0, so z = −x− y and sA(0) = {(x, y,−x− y) | x, y ∈ R}. The
subspace sA(0) has a basis given by {(1, 0,−1), (0, 1,−1)}. It’s easy to see that this set
is spanning as (x, y,−x− y) = x(1, 0,−1) + y(0, 1,−1) for all x, y ∈ R and it is linearly
independent as it only contains two vectors and they are not multiple of each other.
When λ = 5 we have  −5 0 0

5 0 5
0 0 −5

  x
y
z

 =

 0
0
0

 .

So we get −5x = 0, 5x + 5z = 0 and −5z = 0, so z = x = 0 and sA(5) = {(0, y, 0) | y ∈
R}. The subspace sA(5) has a basis given by {(0, 1, 0)}. It’s easy to see that this set is
spanning as (0, y, 0) = y(0, 1, 0) for all y ∈ R and it is linearly independent as it only
contains one non-zero vector.

The change of basis matrix is given by P =

 1 0 0
0 1 1

−1 −1 0

 and P−1 =

 1 0 0
−1 0 −1

1 1 1


and we have

P−1AP =

 1 0 0
−1 0 −1

1 1 1

  0 0 0
5 5 5
0 0 0

  1 0 0
0 1 1

−1 −1 0

 =

 0 0 0
0 0 0
0 0 5


(d) Consider the characteristic equation

det

 −λ −1 −3
2 3− λ 3
−2 1 1− λ

 = (λ− 2)(−λ + 4)(λ + 2) = 0.

Thus the eigenvalues are λ = 2, λ = 4 and λ = −2.
When λ = 2 we have  −2 −1 −3

2 1 3
−2 1 −1

  x
y
z

 =

 0
0
0

 .

So we get −2x− y− 3z = 0, 2x+ y +3z +0 and −2x+ y− z = 0 so y = −z, x = −z and
sA(2) = {(−z,−z, z) | z ∈ R}. The subspace sA(2) has a basis given by {(−1,−1, 1)}.
It’s easy to see that this set is spanning as (−z,−z, z) = z(−1,−1, 1) for all z ∈ R and
it is linearly independent as it only contains one non-zero vector.
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When λ = −2 we have  2 −1 −3
2 5 3

−2 1 3

  x
y
z

 =

 0
0
0

 .

So we get 2x − y − 3z = 0 and 2x + 5y + 3z = 0. Solving these equations we obtain
x = −y and z = −y. Thus the subspace sA(−2) = {(−y, y,−y) | y ∈ R} and it has a
basis given by {(−1, 1,−1)} (check as before).
When λ = 4 we have  −4 −1 −3

2 −1 3
−2 1 −3

  x
y
z

 =

 0
0
0

 .

So we get −4x − y − 3z = 0 and 2x − y + 3z = 0. Solving these two equations we get
x = −y and z = y. Thus the subspace sA(4) is given by sA(4) = {(−y, y, y) | y ∈ R}.
This subspace has a basis given by {(−1, 1, 1)} (check as before).

The change of basis matrix P =

 −1 −1 −1
−1 1 1

1 −1 1

 and P−1 =

 −1
2 −1

2 0
−1

2 0 −1
2

0 1
2

1
2

 and

we have

P−1AP =

 −1
2 −1

2 0
−1

2 0 −1
2

0 1
2

1
2

  0 −1 −3
2 3 3

−2 1 1

  −1 −1 −1
−1 1 1

1 −1 1

 =

 2 0 0
0 −2 0
0 0 4



3. (a) A =
(

0.95 0.45
0.05 0.55

)
.

(b) Tuesday: (
x1

y1

)
=

(
0.95 0.45
0.05 0.55

) (
0.8
0.2

)
=

(
0.85
0.15

)
Wednesday: (

x2

y2

)
=

(
0.95 0.45
0.05 0.55

) (
0.85
0.15

)
=

(
0.875
0.125

)
After n days: (

xn

yn

)
=

(
0.95 0.45
0.05 0.55

)n (
0.8
0.2

)
In order to calculate the n-th power of A we first need to diagonalize this matrix (if
possible). We use the same method as in question 2. First consider the characteristic
equation:

det
(

0.95− λ 0.45
0.05 0.55− λ

)
= λ2 − 1.5λ + 0.5 = (λ− 1)(λ− 0.5) = 0

So the eigenvalues of A are given by 1 and 0.5.
The eigenspace sA(1) corresponding to λ = 1 is given as(

−0.05 0.45
0.05 −0.45

) (
x
y

)
=

(
0
0

)
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so we get
sA(1) = {(x, y) ∈ R2 | x = 9y}.

A basis for sA(1) is given by {(9, 1)}.
Similarly, the eigenspace sA(0.5) corresponding to λ = 0.5 is given by

sA(0.5) = {(x, y) ∈ R2 | y = −x}.

A basis for sA(0.5) is given by {(1,−1)}.

Thus we have P =
(

9 1
1 −1

)
, P−1 =

(
0.1 0.1
0.1 −0.9

)
and

P−1AP =
(

1 0
0 0.5

)
= D.

Going back to the original question we have

An = PDnP−1 =
(

9 1
1 −1

) (
1 0
0 0.5

)n (
0.1 0.1
0.1 −0.9

)
=

(
1 0
0 0.5

)
=

(
0.9 + 0.1(0.5)n 0.9− 0.9(0.5)n

0.1− 0.1(0.5)n 0.1 + 0.9(0.5)n

)
Thus we have (

xn

yn

)
= An

(
0.8
0.2

)
=

(
0.9− 0.1(0.5)n

0.1 + 0.1(0.5)n

)
.

And finally we can find the long term evolution of the distribution of healthy and ill
students i.e. letting n →∞ we get(

xn

yn

)
→

(
0.9
0.1

)
.

Thus in the long term, 90 percent of students will be healthy and 10 percent will be ill.
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