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Abstract— This work focuses on modeling tumorigenesis as
a spatial evolutionary game and on finding optimal cancer
treatment using a model predictive control approach. Extending
a nonspatial cancer game from the literature into a spatial
setting, we consider a solid tumor composed of cells of two
different types: proliferative and motile. In our agent-based
spatial game, cells represent vertices of an undirected dynamic
graph where a link between any two cells indicates that these
cells can interact with each other. A focal cell can reproduce
only if it interacts with another cell, where the proliferation
probabilities are given by the fitness matrix of the original
nonspatial game. Without treatment, the cancer cells grow
exponentially. Subsequently, we use nonlinear model predictive
control to find an optimal time-varying treatment, with an
objective representing a trade-off between minimization of the
tumor mass and treatment toxicity. As for example androgen-
deprivation treatment in metastatic castrate-resistant prostate
cancer, this treatment is assumed to decrease the chances for
interaction between the cancer cells and hereby decrease cells’
proliferation rate. In case studies, we show that the optimal
treatment often leads to a decrease of the tumor mass. This
suggests that model predictive control has a high potential in
designing cancer treatments.

Keywords: cancer modeling and treatment, spatial evo-
lutionary game theory, nonlinear model predictive control,
dynamic graphs.

I. INTRODUCTION

Tumor is a complex ecosystem containing cancer cells,
normal cells, blood vasculature, inter-cellular spaces, and
various nutrients [1]–[4]. Within this ecosystem, cancer cells
interact with each other, in order to proliferate and sur-
vive [5]. While tumors are often modeled non-spatially, biop-
sies, histological samples and magnetic resonance images
provide all spatial information on tumor characteristics [6].
Pathologists often measure and score spatial distributions of
cancer cell types, vasculature, immune cells, and other tumor
properties. Cancer biologists often study spatial heterogene-
ity within tumors [7]–[9]. This heterogeneity likely has
significance for tumor progression, metastases and patient
prospects.

Spatial models of cancer may take the form of diffusion
processes framed as partial differential equations models
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[10], or the models may be agent based [1], [8], [11]–[14].
As each cancer cell’s proliferation is influenced by its type
and the types of other cancer cells, the evolutionary dynamics
of cancer is game theoretic [15]. Evolutionary game theory
(EGT) provides an excellent modeling tool for analysis of
complex tumors that include several interacting cancer cell
types. When there are a finite number of different possible
strategies among the cancer cells, then the evolutionary
dynamics can be modeled using replicator dynamics (RD)
[16], [17]. While RD is non-spatial, recent research has
focused on its extension into spatially explicit scenarios [1],
[18]–[21]. Both the evolutionary dynamics and subsequent
equilibria may change dramatically when space is made
explicit [1], [22]–[26].

Inspired by the added realism when moving a known
nonspatial game into space, in this paper we extend an
evolutionary game between two different cancer types (pro-
liferative and motile) from [27] into a spatial agent-based
game. We use a dynamic graph to model the interaction
and proliferation of cancer cells. All cells connected to a
focal cell belong to its neighborhood (microenvironment)
and can be interacted with. The probability for a cancer
cell to proliferate when interacting with its neighbor of any
type is given by a fitness matrix from [27]. If the focal cell
proliferates, it produces a daughter cell of the same type,
which is then placed into the field and connected to all
existing cells in this field.

Moreover, for this newly developed model we seek an
optimal treatment using a model predictive control (MPC)
approach [28]–[30]. MPC has become the accepted standard
for complex constrained multivariable control problems [28],
[29]. The treatment is assumed to decrease cells’ ability
to interact with their neighbors as it removes a portion of
links between cells of certain types. In fact, it is believed
that some of androgen-deprivation therapies in metastatic
castrate-resistant prostate cancer have this effect [31], [32].
MPC is a promising strategy for finding optimal cancer
treatment as shown in other recents works [33]–[35]. Here
we present a combination of modeling the tumorigenesis as
an evolutionary game over a dynamic graph and finding its
treatment using MPC. To the best of our knowledge, there
is no existing research combining these two elements.

The remainder of this paper is organized as follows. In
Section II, the cancer game played over the dynamic graph
and the treatment vector are introduced. In Section III, a
nonlinear MPC for finding the optimal treatment is presented.
In Section IV, the MPC approach is tested on case studies



differing in the prespecified maximal tolerable treatment
dose. Finally, the conclusions of this work and possible future
steps are discussed in Section V.

II. PROBLEM DESCRIPTION

Consider a population of cancer cells that evolve in
time N (k) = {1, 2, . . . , N(k)}, which is composed of two
different cell types: proliferative and motile, and denoted by
P(k) = {1, 2, . . . , P (k)} and M(k) = {1, 2, . . . ,M(k)},
respectively, with P(k)∪M(k) = N (k), P(k)∩M(k) = ∅.
Each cell i ∈ N (k) belongs to either P(k) or M(k). For
detailed characteristics of each of the two groups of cells,
see [27]. The probability of proliferation of types P and
M is given by the following time-constant fitness matrix
A = [ars] ∈ R2×2, which is taken from [27] and defined as

[ P M
P b

2 b
M b− c b− c

2

]
. (1)

Here ars defines the probability for a focal cell of type r
to produce a daughter cell of the same type after interact-
ing with a cell of type s from its microenvironment. The
following inequalities (also from [27]) have to be satisfied:

0 ≤ b ≤ 1, 2(b− 1) ≤ c ≤ b. (2)

Depending on the values of b and c, evolutionary stable
strategies (ESSs [36]) for the fitness matrix given by (1)
will fit into one of the three following cases:

1) If b < 2c and c > 0, we have a pure-strategy ESS with
only proliferative cells.

2) If b > 2c and c < 0, we have a pure-strategy ESS with
only motile cells.

3) If b > 2c and c > 0, we have a mixed-strategy ESS at(
c

b−c ,
b−2c
b−c

)
.

While in [27] the game was analyzed as a nonspatial evolu-
tionary game, we will extend this standard case into a spatial
agent-based game with cancer treatment.

Example 1 For the particular case of b = 0.8, c = 0.2,
matrix A is given by

A =

[
aPP aPM
aMP aMM

]
=

[
0.4 0.8
0.6 0.7

]
, (3)

and the corresponding matrix game has an ESS at
(

1
3 ,

2
3

)
.

A. Modeling tumor growth and treatment

In this work, we will model the interactions and prolifer-
ation of cancer cells as a spatial game on a dynamic graph.
The tumor at time step k is represented by an undirected
graph (N (k), E(k)), where N (k) and E(k) ⊆ EN (k) =
N (k) ×N (k) are the set of cancer cells in the system and
the set of links between these cells, respectively, at time k.
Only if there is a link between cells i and j, these cells
belong to each other’s neighborhood (microenvironment) and
can therefore interact with each other. A set Ers(k) of links
connecting cells of type r with cells of type s at time s, where

r, s ∈ {P,M}, satisfies
⋃
∀rs Ers(k) = E(k). Therefore,

E(k) = EPP(k) ∪ EPM(k) ∪ EMM(k).

B. Interaction between cancer cells

We specify rules regarding cell death, interaction, and pro-
liferation, which occur in generations. During one generation
all alive cells are selected in a random order as focal cells
to undergo the following steps:

1) A focal cell survives with probability ξ. If the cell dies,
it will not undergo any further actions.

2) A focal cell interacts with a random neighbor connected
to it in the graph (N (k), E(k)). The probability that the
cell of type i will produce a daughter cell of the same
type when interacting with e neighbor of type j is given
by element aij of the fitness matrix (1).

Once all cells have been selected as focal cells, all dead cells
are removed from the field, together with all their links, and
all daughter cells will be placed into the field and connected
to all alive cells. The next generation, corresponding to the
next time step, begins.

C. Treatment

Inspired by androgen deprivation therapy in metastatic
castrate-resistant prostate cancer and other therapies targeting
ability of cancer cells to profit from interactions with other
types of cancer cells [31], [32], [37], [38], we assume that a
treatment at time k removes a subset of links in E(k), leaving
only their subset Λ(k) ⊆ E(k) in the system. We assume that
the treatment is applied only inbetween generations and that
it affects the tumor immediately. The final cancer network
configuration at the end of time step k is therefore given by
(N (k),Λ(k)). It is impossible to target interaction ability
of specific cancer cells and, therefore, the treatment will be
defined by vector

t(k) = [tPP(k), tPM(k), tMM(k)]
T
, (4)

where each component trs(k) refers to the percentage of
links of type rs being removed at time step k. Therefore,

|Λrs(k)| = trs|Ers(k)|. (5)

We assume that these links are removed at random. Addi-
tionally, once a link is removed, it cannot be reconnected. In
Section III, we will explain how the time-varying treatment
will be optimized subject to certain constraints, using MPC.

Example 2 Consider the population of cancer cells N (k̂) =
{1, 2, 3, 4, 5} at time step k = k̂, with the first three cells
being proliferate and the latter two being motile. Let E(k̂) =
{I, II, III, IV,V,VI}, as shown in Fig. 1a, with |EPP| = 2,
|EPM| = 3, |EMM| = 1. Let the treatment vector be chosen as
t(k̂) =

[
1
2 ,

1
3 , 0
]T

.

After applying the treatment, network (N (k̂), E(k̂)) is
reduced to (N (k̂),Λ(k̂)), with Λ(k̂) being any topology that
verifies (5), i.e.,

|ΛPP| = 1, |ΛPM| = 1, |ΛMM| = 1. (6)



From 64 possible topologies that can be obtained from E(k̂),
the only six topologies that satisfy (6) are shown in Fig. 1b
(in lexicographical order). Note that we will consider all
these topologies equivalent from the control viewpoint.

Fig. 1. Topologies that correspond to the treatment in Example 2

III. MODEL PREDICTIVE CONTROL

Model predictive control (MPC) uses an explicit process
model to predict this process future evolution starting from
the current system state along a pre-specified prediction
horizon Np. This way, at each time instant, an optimal control
problem is solved to calculate an optimal input sequence over
the horizon. Only the first element of the input sequence,
which corresponds to the current time step, is applied and
the rest of the elements is discarded. This is repeated at each
time step following a receding horizon strategy.

In this section, a nonlinear centralized MPC controller
is considered to calculate the optimal treatment. Fig. 2
illustrates the MPC algorithm.

Fig. 2. Control scheme for finding optimal treatment at time step k

A. Macroscopic cancer model

In this section, we introduce a model for the process
of interaction among cells described in Section II. The
following matrix captures the decrease of the probability
of reproduction of fitness matrix A given by (1), as a
consequence of the treatment:

AΛ(k) =

[
aΛ

PP(k) aΛ
PM(k)

aΛ
MP(k) aΛ

MM(k)

]
=

[
aPP(1− tPP(k)) aPM(1− tPM(k))
aMP(1− tPM(k)) aMM(1− tMM(k))

]
.

(7)

Here each element aΛ
rs(k) refers to the proliferation prob-

ability of a cell of type r when interacting with a cell of
type s after the treatment is applied. Without the treatment
all the links stay available and, consequently, Λ(k) = E(k),
and AΛ(k) = A,∀k.

Considering (7), the following population macroscopic
nonlinear model is used by the controller to estimate the
number of cells of each type:

P (k + 1) = ξ

(
P (k) +N(k)

[
P2(k)

N2(k)
aΛ

PP(k) +
P (k)M(k)

N2(k)
aΛ

PM(k)
])
,

M(k + 1) = ξ

(
M(k) +N(k)

[
M2(k)

N2(k)
aΛ

MM(k) +
P (k)M(k)

N2(k)
aΛ

MP(k)
])
,

(8)

with P (k)+M(k) = N(k), where aΛ
rs is given by AΛ in (7),

and with ξ being a scalar constant that refers to the portion
of cells that survive in each generation.

Note that model (8) is calculated by making a probabilistic
forecast based on the process described in Section II.

Remark 1 Alternatively, the evolution of the system can be
modeled by the well-known replicator dynamics [17], [39].
A generalization of the discrete-time replicator equation that
considers the treatment is given by

x(k+1) = x(k)+x(k)◦(AΛx(k)−e xT(k)AΛx(k)), (9)

where x(k) =
[
P (k)
N(k) ,

M(k)
N(k)

]T
, e = [1, 1]T, with operator ◦

denoting the Hadamard or element-wise product, and with
AΛ given by (7).

Naturally, the macroscopic model could be also replaced
by patient’s data on cancer progression.

B. Cumulated treatment model

We also consider an additional state in the system model,
which is decoupled from the dynamics of cancer cells. In
particular, we assume that the treatment t(k) applied at each
time step has a cumulative (toxic) effect on the patient,
which has to be taken into account for safety reasons. The
cumulated treatment is modeled as follows:

tcum(k + 1) = α1tcum(k) + α2

(
tPP(k) + tPM(k) + tMM(k)

)
,

(10)
where 0 ≤ α1, α2 ≤ 1 are scalar constants.

C. Optimization problem

The controller has the following goals:
1) Minimize the number of cancer cells
2) Keep the proportion of both types of cells intact:

an abrupt change of the proportions can have fatal
consequences for the patient. The so-called adaptive
treatment focuses on keeping the proportion of different
cell types under control to avoid evolution of resistance
to treatment [1], [4].

3) To keep the cumulated treatment tcum(k) below a pre-
specified maximal tolerable dose, as large amounts of
treatment are toxic for the patient.



We will solve the following optimization problem over the
prediction horizon Np:

min
t[k:k+Np−1]

Np−1∑
h=0

(
y(k + h)− yref(k + h)

)T

Q(k + h)
(
y(k + h)− yref(k + h)

)
+tT(k + h)R(k + h)t(k + h),

(11)

where t[k : k + Np − 1] = (t(k), . . . , t(k +Np − 1)),
with y(k) = [P (k),M(k), tcum(k)]T, where Q(k), R(k) are
weighting matrices, and where yref(k) represents a dynamic
reference. Problem (11) is solved subject to the following
constraints:
• The model dynamics, which is given by (8) for the

cancer cells and by (10) for the cumulated treatment.
• Treatment vector t(k) refers to proportions of links to

be removed, thus

0 ≤ trs(k + h) ≤ 1, ∀h ∈ {0, . . . , Np − 1}. (12)

• Likewise, the cumulated treatment tcum(k) is required
to satisfy the following:

Np−1∑
h=0

∑
∀rs

trs(k + h) ≤ γ(tmax
cum − tcum(k)), (13)

with γ ∈ R+, γ > 1 being a constant scalar, and where
tmax

cum is the maximum tolerable dose of treatment at each
time instant. Using constraint (13) we impose a limit
on the dose of drug that can be administrated to the
patient during the horizon. The maximum of this limit
is achieved at γtmax

cum, which happens when tcum(k) = 0.
• The initial conditions y(k) for the optimization prob-

lem, which may be estimated by means of clinical
measurements.

We denote an argument solving problem (11) by t∗[k :
k+Np−1]. Only the first element t∗(k) of t∗[k : k+Np−1] is
actually applied, the rest is discarded. The horizon is shifted
to the next time step, when the problem is solved again,
applying only the first element of the argument. This process
is repeated in a receding horizon fashion. The problem (11)
is a nonlinear MPC problem due to the nonlinear nature
of the model (8).

IV. CASE STUDIES

The case studies presented in this work have been simu-
lated by using the Matlab R© solver fmincom to calculate the
optimal treatment, in a 2.7 GHz quad-core Intel Core R© i5,
4 GB RAM computer. The initial tumor conditions are
P (0) = 17, M(0) = 33 and the configuration is shown in
Fig. 7 (top left). The controller receives an estimate of the
cancer cells population and the cumulated treatment, which
is provided by an unbiased estimator with an error bounded
to the 2% of the actual value. The fitness matrix A is given
by (3). The rest of the parameters is set as follows:

Tsim = 15, ξ = 0.95, α1 = 0.9, α2 = 0.05,

Np = 5, yref(k) = N(k)
[

1
3 ,

2
3 , 0
]T
, tmax

cum = 1,

Q =

 0.95(k−1) 0 0
0 0.95(k−1) 0
0 0 0

,
R =

[
10 · 0.95(k−1) 0

0 10 · 0.95(k−1)

]
.

(14)

Note that, if we set tmax
cum = 1, the maximum tolerable dose of

treatment along Np is simply given by γtmax
cum = γ. We have

considered the following three scenarios: (i) no treatment,
i.e., t(k) = 0, ∀k, (ii) applied treatment with γ = 5, (iii)
applied treatment with γ = 20.

A. Scenario I

With no treatment, each cell in network (N (k), E(k)) can
always interact with any other cell in the entire population,
as there no links removed and hence Λ(k) = E(k), ∀k.
This way, the probability of reproduction given by the fitness
matrix (3) does not change. The frequencies of the two types
of cells coincide with the ESS of this matrix, as shown in
Fig. 3. The tumor increases rapidly as both cell populations
grow exponentially.

Fig. 3. Scenario I. No treatment applied: (left) Cell proportions stay close
to ESS

(
1
3
, 2

3

)
; (right) Populations of cells. The simulation length in this

scenario was reduced to Tsim = 6, due to combinatorial issues caused by
the exponential growth in cancer cells.

B. Scenario II

In this scenario, we consider a treatment with γ = 5.
This value represents a strict upper bound on the applied
treatment during the prediction horizon. For this reason, the
cumulated treatment at each instant k is always kept under
0.45, much lower than the maximal tolerable dose tmax

cum =
1. When applying this treatment, some links are removed
which causes a lower reproduction rate in comparison with
Scenario I. Therefore, the population growth of cancer cells
is slower, while the proportions of the two cell types are close
to their ESS proportions. Nevertheless, the treatment dose is
not sufficient to kill the tumor. All the results provided by
this scenario are shown in Fig. 4.



Fig. 4. Scenario II. Treatment with γ = 5: (top left) Cell proportions are
close to their ESS proportions; (top right) The speed of population growth
has been reduced; (down left) Optimal treatment; (down right) Cumulated
treatment.

C. Scenario III

In the last scenario we consider a treatment with γ = 20.
In this case, a higher maximal tolerable treatment dose is
permitted. Subsequently, the cumulated amount of drug at
each instant k is higher than in Scenario II, but it is always
below tmax

cum. The frequencies of cancer cell types are also
similar to their ESS frequencies. This treatment stops the
tumor growth, as it can be seen in Fig. 5.

Finally, Fig. 6 shows a networked overview of the initial
cells and their evolution in the three proposed scenarios. Note
that for the initial population and the case without treatment
the number of links |E(k)| corresponds to the complete-
network case, i.e., |N (k)||N (k) − 1|/2, since there are no
links removed by the treatment.

Fig. 5. Scenario III. Treatment with γ = 20: (top left) Cell proportions
are similar to their ESS proportions; (top right) The population of cells has
been reduced and decreased; (down left) Optimal treatment; (down right)
Cumulated treatment.

Fig. 6. Visualization of the tumor growth in the different scenarios: (top
left) Initial tumor; (top right) Tumor in Scenario I, Tsim = 6; (down left)
Tumor in Scenario II, Tsim = 15; (down right) Tumor in Scenario III,
Tsim = 15.

V. CONCLUSIONS

We have developed a spatial game played over a dynamic
undirected graph to model tumorigenesis. The nodes of this
graph represent cancer cells and the cell types represent cells’
strategies, while links determine who is allowed to interact
with whom. An optimal cancer treatment disconnecting
proportion of the links among specific cell types and hereby
reducing cancer cells’ proliferation rate has been found using
a nonlinear MPC controller. Here a nonspatial RD model was
used to estimate the cells’ number at each time step of the
MPC, while the total amount of treatment was bounded by
its a priori decided maximal tolerable dose.

We have considered three scenarios: the first one corre-
sponds to the tumor progression without treatment. Here
cancer cells show exponential growth. In the second scenario
with a very low maximal tolerable dose the speed of cancer
growth is substantially decreased. The third scenario with
a higher maximal tolerable treatment dose leads to the
complete elimination of the cancer cells.

In this work, we have demonstrated that the MPC approach
has a high potential for designing cancer treatment. However,
as an initial step, we assumed an ideal setting in which it
is possible to obtain measurement regarding the state of the
tumor and directly manipulate the corresponding variables
of interest. How to obtain the measurements and apply the
drugs are topics beyond the scope of this paper since it would
lead to a higher complexity of the models considered. As a
consequence, the MPC policy can be seen as a top layer
controller that receives estimates of the state of the tumor
and provides actions that will be translated into inputs on
the patients body, e.g., androgen deprivation therapy doses.
Both the estimation and the drug application procedures are
ignored here for the sake of simplicity. More realism could
be added to the model also on the treatment side: Instead
of focusing on a single treatment, we could think of finding
the best combination of multiple treatments. Some of these



treatments may attack the carrying capacity of certain cancer
cells’ type instead of their proliferative capabilities. In order
to model such treatments as well, we will need to convert the
RD model into a Lotka-Volterra competition model, which
includes carrying capacities of different cancer types and
which we can then manipulate.

One of the biggest challenges of finding the appropriate
cancer treatment is the evolution of resistance in cancer
cells. Similarly as it is done in pest management when
pests evolve resistance to pest control, the treatment-resistant
type of cancer cells needs to be controlled to increase the
chances for a successful treatment [40]. Future work should
therefore include treatment-resistant type into our spatial
model, similarly as it was done in [1].

Finally, the ultimate objective of our efforts should be to
validate our treatment predictions with real patients’ data.
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