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Abstract
In recent years, classical evolutionary models have been extended to incorporate realistic
multiplayer interactions rather than the traditional pairwise modelling approach. Several
papers have introduced a new evolutionary framework involving population structure, evo-
lutionary dynamics, multiplayer games and movement processes. The theory underlying the
framework has been explored in several directions, identifying strong predictors of fixation
probability, such as mean group size and temperature. A recent study developed an evolution-
ary model where individuals move in a coordinated manner via newly developed movement
mechanisms, resulting in herding or separation within the population. This analysis demon-
strated that these movement mechanisms impact the fixation probability of cooperation. This
paper extends this analysis by investigating whether the previously identified predictors of
fixation probability retain their strong influences under different games on complete graphs
and by considering a different social dilemma in the form of the Stag-Hunt game. We show
that previously defined measures of aggregation are directly related to mean group size and
that these fundamental measures can be analytically calculated. In the Stag-Hunt game, we
demonstrate that herding opposes the evolution of cooperation. In the Public Goods game,
we demonstrate that temperature and fixation share a linear relationship regardless of the
movement mechanism considered. In the Hawk-Dove game, temperature is a stronger pre-
dictor of fixation but the linear relationship breaks down for higher temperatures and a similar
relationship holds as for the Stag-Hunt game.
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1 Introduction

Evolutionary graph theory, developed by Lieberman et al. [1], has significantly advanced the
modelling of structured populations. Unlike traditional evolutionary game theory models,
which assume infinite, homogeneous populations (Maynard Smith [2]), evolutionary graph
theory focuses on finite, inhomogeneous populations. This approach allows for more realistic
features, such as geographical structure, where individuals are more likely to interact with
others in close proximity. In evolutionary graph theory, the population is represented by a
graph. Individuals are represented by the vertices of the graph and interact with neighbouring
individuals via the edges. These interactions determine the fitness of each member of the
population, which plays a central role in the evolutionary dynamics governing the evolution
of the population. One of the key advantages of evolutionary graph theory is its ability to
incorporate various population structures (Antal and Scheuring [3]; Broom and Rychtar [4];
Maciejewski [5]; Hindersin and Traulsen [6]; Cuesta et al. [7]), and research has shown that
graphical topology significantly influences population evolution (Santos and Pacheco [8];
Broom and Rychtar [4]; Broom et al. [9]; Li et al. [10]; Voorhees [11]; Tkadlec et al. [12];
Fic and Gokhale [13]).

However, evolutionary graph theory typically models interactions between individuals as
pairwise contests, rather than amore realisticmultiplayer approach.A recent series of research
papers has addressed this limitation via the development of an extensivemodelling framework
that examines the evolution of structured populationswhere individuals engage inmultiplayer
contests, which we refer to as the Broom-Rychtár̂ framework (Broom and Rychtar [14],
Broom et al. [15]; Broom et al. [16]). Evolutionary multiplayer games were introduced by
Palm [17], and the theory was developed by Broom et al. [18], see also Bukowski and
Miekisz [19]. These interactions often use standard games such as Public Goods, Hawk-
Dove and the Stag-Hunt (Ohtsuki et al. [20]; Santos et al. [21]; van Veelen and Nowak [22];
Hadjichrysanthou et al. [23], Broom and Rychtar [24]). The framework has been explored in
various directions (Broom et al. [15]; Pattni et al. [25]; Schimit et al. [26]; Schimit et al. [27]),
but a significant class ofmodels was considered in Broom et al. [15] where the populationwas
represented by a territorial raider model (a special case of the Broom-Rychtár̂ framework).

In Broom et al. [15], individuals can move and interact in arbitrary group sizes under the
BDB dynamics (invasion process), where an individual is first selected to reproduce with
probability proportional to the fitness they accrue from their interactions, relative to the total
of the fitnesseswithin the population. Following this, a replacement event occurs, inwhich the
offspring randomly replaces anothermember of the parent’s group as explained in section 3.2.
In this and several other models, individuals move independently i.e. without influence from
past movements (history-independent) nor from the movement of other individuals (row-
independent), see Broom et al. [15]; Schimit et al. [26]; Schimit et al. [27]. Other types of
movement, such as history-dependent movement, where present movement decisions are
affected by past movements have also been considered (Pattni et al. [28]; Erovenko et al.
[29]). What was missing from the existing literature, however, was the consideration of row-
dependent movement in the evolution of cooperative behaviour, where the movements of
individuals are influenced by the movement of others.

In Broom et al. [30], various row-dependent movement models were developed to char-
acterise realistic movement behaviours, such as migration, herding, and dispersal. In Haq
et al. [31], these movement procedures were incorporated in the evolutionary setting of
the territorial raider model through the development of a generalised movement modelling
approach, demonstrating how individuals could achieve an apriori target distribution. The
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effects of the movement mechanisms on the evolution of cooperation in the Public Goods
and Hawk-Dove games on complete networks were extensively explored. However, it has
been previously shown that measures such as mean group size and temperature are strong
predictors of fixation probability, with temperature often being the stronger predictor (Broom
et al. [15]; Schimit et al. [26]; Schimit et al. [26]). The purpose of this paper is to extend the
previous analysis by using the evolutionary model developed in Haq et al. [31] to investigate
how the row-dependent movement mechanisms affect the predictors of fixation probability,
and whether the measures retain their significance as strong predictors of fixation. We also
consider the Stag-Hunt game as this has not been previously considered, to investigate the
effects of row-dependentmovement in a social dilemma gamewhere selection can potentially
favour cooperation.

2 The Broom-Rychtár̂ Framework

The modelling framework developed by Broom and Rychtar [14] acts as the theoretical
foundation for work that has been extensively explored (Broom et al. [32]; Erovenko et al.
[29]; Erovenko and Broom. [33]) and the work done in this paper. The key components of
the framework are: the population structure, the evolutionary dynamics and the multiplayer
games. The fully independent model was developed from this framework, and was extended
to the territorial raider model which we use within this paper.

3 TheModel

In Haq et al. [31], a model was developed that combined the evolutionary setting of the
territorial raider model from Broom et al. [15] with the movement mechanisms from Broom
et al. [30]. This model is the basis for the work done in this paper and we first explain its
four key components: population structure, evolutionary dynamics, multiplayer games and
movement procedures.

3.1 Population Structure: Territorial Raider Model

The most significant example of the Broom-Rychtar framework is the territorial raider model
(illustrated in Fig.1), which has been extensively explored (Broom et al. [15]; Pattni et al.
[25]; Schimit et al. [26]). In the territorial raider model, there are N individuals who move
and interact with other individuals at M places. Individual Ii lives at place Pm throughout the
entire evolutionary process. In the original territorial raider model from Broom and Rychtar
[14] there was a one-to-one correspondence between individuals and places, although this
was generalised in Pattni et al. [25]. The global home fidelity parameter h is a measure
of the preference individuals have for staying on their home vertex and is the same for all
individuals. The higher h is, the more likely individuals are to stay on their home vertex
and, therefore, less likely to move and interact with other individuals. Given an individual Ii
with m neighbouring places, the probability of Ii staying home is h/(h + m) and moving is
m/(h + m). If h = 1, this represents an indifference individuals have between all reachable
places and means that they are equally likely to visit any of them and if the base graph is the
complete graph, this is a completely mixed population.
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Fig. 1 The territorial raider model of Broom and Rychtar [14]. a Population structure is represented using a
complete graph with 4 nodes. Individual In lives in place Pm and can visit any neighbouring place. The apriori
distribution for any individual is P(In is on their home vetex) = h

h+3 and P(In is elsewhere) = 3
h+3 . b In ’s

movement distribution is represented using the movement methodology explained in section 3.5 where the
In partakes in the movement process. c using the methodology in section 3.5, In ’s movement distribution is
represented using the movement methodology explained in section 3.5 where the In does not partake in the
movement process and, therefore, stays on their home vertex. Thus the process in (a) is represented by an
individual following (b) with probability 4

h+3 and (c) with probability h−1
h+3

Individuals move along the graph according to their own movement distributions and
form groups on the vertices of the graph. Let G denote a group of individuals; then χ(m,G)

represents the probability of group G forming at place Pm . When groups of individuals are
formed, multiplayer contests are played. Individual In receives a payoff that depends upon
the composition of the group G itself and the place Pm the group is located in, denoted
by Rn,m,G . Individual In’s average fitness is calculated by considering all payoffs they can
receive averaged over all possible groups and places,

Fn =
∑

m

∑

G
n∈G

χ(m,G)Rn,m,G . (1)

3.2 Evolutionary Dynamics

In this paper, the evolutionary process is governed by an invasion process (Lieberman et al.
[1], Nowak [34]), a birth death process in which selection acts on the first event (written
BDB or Bd), which has been commonly used in evolutionary graph theory, and adapted to
the Broom-Rychtár̂ framework in Broom et al. [15].

An individual Ii is first selected to reproduce with probability proportional to their fitness
i.e.

bi = Fi∑
k Fk

. (2)

Then the offspring replaces another individual I j with probability

di j =

⎧
⎪⎪⎨

⎪⎪⎩

∑
m

∑
G

i, j∈G

χ(m,G)
|G|−1 , i �= j,

∑
m

χ(m, {i}), i = j
. (3)
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The replacement probability assumes that an offspring of individual Ii will replace individual
I j with probability proportional to the time Ii and I j spend with each other. The offspring
of Ii can also replace its parent Ii , and it does so with probability proportional to the time Ii
spends alone. This is because if an isolated individual is selected to reproduce, its offspring is
guaranteed to replace the parent, as there are no other individuals available for replacement.
An alternative explanation is that as there are no individuals for the offspring to replace, it
does not survive and the parent is not replaced. In either case the population is effectively
unchanged.When i �= j , the probability of individuals Ii and I j meeting is given by summing
all χ(m,G) over all m such that Ii , I j ∈ G. We assume that Ii spends an equal amount of
time with all other members of group G, therefore we weight by 1/(|G| − 1) as there are
|G| − 1 other members of the group. However, when i = j , we sum χ(m,G) over all m such
that G = {i}. There is no need to weight χ(m,G) because Ii is alone.

The temperature of an individual was derived in Lieberman et al. [1]; it is proportional to
the likelihood of an individual being replaced within a neutral population where all members
have constant fitness. The temperature is given by

τ j =
∑

i �= j

di j . (4)

The higher the temperature of an individual, the more likely they are to be replaced. Note
that, as in Haq et al. [31], we only consider complete networks, and so can write di j as dN
(since d depends upon N ). All individuals then have the same temperature and this can be
expressed as

τN = (N − 1)dN . (5)

3.3 The Fixation Probability

Thefixation probability is regarded as themost significantmeasurewithin afinite evolutionary
system as it measures the likelihood of the evolutionary success of a particular strategy. The
fixation probability ρC (ρD) is the probability that the offspring of a randomly placed mutant
cooperator (defector) eventually replaces the entire population. In the Stag-hunt game, we
use 1

N as a benchmark when comparing fixation probabilities. As explained in Taylor et
al. [35], we say that selection favours cooperators replacing defectors when ρC > 1

N , and
cooperation evolves if ρC > 1

N > ρD .
In Haq et al. [31], it was shown that by using standard results from Karlin and Taylor [36],

the fixation probability of a mutant cooperator (in the Public Goods game) and dove (in the
Hawk-Dove game) under BDB dynamics on a complete N -sized network are respectively
given by

ρC = 1

1 + ∑N−1
j=1

∏ j
k=1

R+kVdN
R−C+(k−1)VdN

, (6)

ρD = 1

1 + ∑N−1
j=1

∏ j
k=1

R+ωV−νC
R+τV

. (7)

Here, R corresponds to the background payoff individuals receive from activities unrelated
to the games, V represents the reward individuals gain from the multiplayer contests and
C is the cost individuals endure from the contests. These variables are described in more
detail in Section (3.4). We used these formulae (6) and (7) in our analysis to demonstrate the
underlying relationship between temperature and fixation probability.
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3.4 Multiplayer Games in Structured Populations

We considered three different multiplayer games to describe the interactions between indi-
viduals. The Public Goods, Hawk-Dove and Stag-Hunt games. Each of the games describes a
contest between two different types of individuals, A and B. Using these games, we describe
an evolutionary process of a single mutant cooperator within a population of resident defec-
tors. In the payoffs described for each of the games, R is the background payoff individuals
receive from activities unrelated to the games, C represents the cost and V is the reward
gained.

3.4.1 The Multiplayer Public Goods Game

In this game individuals can either cooperate (A) or defect (B). The cooperator pays a cost
which is shared among the rest of the group as a reward but not shared by the individual
who made the sacrifice. Defectors pay no cost. After a game is played between a group of x
cooperators and y defectors, the payoffs are respectively

RA
x,y =

⎧
⎨

⎩

R − C, x = 1

R − C +
(

x−1
x+y−1

)
V , x > 1

(8)

RB
x,y =

⎧
⎨

⎩

R, x = 0

R +
(

x
x+y−1

)
V , x > 0

(9)

3.4.2 The Multiplayer Hawk-Dove Game

In the Hawk-Dove game, individuals compete for resources located on the vertices. Doves
(B) will always share the reward amongst all other individuals unless there are hawks (A)
present within the group. In this case, doves will concede and hawks will compete amongst
themselves for the reward. A single hawk wins the reward, while all other hawks endure a
cost from the violent contest. In a group of x hawks and y doves, the average payoffs are
given by

RA
x,y = R + V − (x − 1)C

x
(10)

RB
x,y =

{
R, if x > 0

R + V
y if x = 0

(11)

3.4.3 The Multiplayer Stag-Hunt Game

The multiplayer Stag-Hunt game consists of two types of individuals, cooperators (A) and
defectors (B). The payoff functions are step functions where L > 1 cooperators are required
to group together for the public good to be produced. The cooperators always pay a cost C
regardless of whether the threshold is met or not. In a group of x cooperators and y defectors,
the payoffs are given by

RA
x,y =

⎧
⎨

⎩

R − C, x < L

R − C +
(

x
x+y

)
V , x ≥ L

(12)
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RB
x,y =

⎧
⎨

⎩

R, x < L

R +
(

x
x+y

)
V , x ≥ L

(13)

3.5 TheMovement Process

In Haq et al. [31] a general movement methodology was developed that embeds the row-
dependent movement models from Broom et al. [30] into the evolutionary setting of the
territorial raider model which we use within this paper. The methodology consists of a prob-
ability distribution that describes the various movement decisions available to individuals
within the population. This includes both those who partake in the movement process (gov-
erned by the chosen row-dependent movement mechanism) and those who do not, with the
actions available for the latter group varying according to the value of h. Consider a complete
graph where there are M places.

• If h > 1, then an individual can either partake in the process and move via the movement
mechanism with probability M

h+M−1 or they do not move and stay at their home vertex

with probability h−1
h+M−1 .• If h = 1, then every member of the population plays the process.

• If h < 1, then an individual can either move via the process with probability Mh
h+M−1 or

they move to a random non-home place with probability (M−1)(1−h)
h+M−1 .

The main purpose of this approach was to achieve a target distribution given by an apriori
distribution, denoted by am , which represents the probability of a randomly selected indi-
vidual going to a particular place. However, we omit the details which can be found in Haq
et al. [31]. When individuals partake in the movement process, they will move via one of
the three mechanisms: follow the majority, Polya-urn, or the wheel. Note that the first step
of the sequential movement processes (follow the majority and Polya-urn) is to assign the
ordering uniformly at random over all possible orderings (or if simulating a large population,
make selection among the remaining individuals at each step of the sequence with uniform
probability). Using this methodology, important metrics such as the mean group size and
temperature can be calculated which we show in Sect. 4.1.

In Broom and Rychtar [14], the mean group size from the individual’s perspective was
found to be

Ḡ =
∑

m

∑

G

χ(m,G)|G|2∑
m

∑
G

χ(m,G)|G| . (14)

Broom et al. [30] derived novelmeasures of aggregationwhichwe can also calculate using the
methodologydescribed above.Themost significant of thesemeasureswasdenoted asT which
is the probability of two individuals being together which is one of the most fundamental
properties of any movement process which is given by

T = 1

N (N − 1)

M∑

m=1

E[Xm(Xm − 1)], (15)

where Xm denotes the number of individuals on place Pm .
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3.6 Follow theMajority

The type of coordinated movement we first consider is the follow the majority process where
individuals simply move to the place that provides them with the most utility. The first
individual moves to a place according to its apriori distribution and subsequent individuals
simply move to the place where the largest number of individuals reside. The utility an
individual receives from place Pm is given by

Um = Ym + 1, (16)

where Ym is the current number of occupants on place Pm . For a well-mixed population on a
complete graph with h = 1, this results in all individuals being in a single group on the same
vertex, the location of which follows the apriori distribution.

3.7 The Polya-urn

The Polya-urn model represents a probabilistic movement process, where individuals move
to a place with probability relative to their utility function i.e. an individual moves to place
Pm with probability Um/

∑
k Uk . This probabilistic model is represented by an urn model

(Johnson andKotz [37]), where balls are numbered 1, 2, ..., M and placed into an urn and then
sequentially drawn out at random. The nth ball with number m being drawn out corresponds
to the nth individual moving to place Pm . Utility positively correlates with place occupancy
therefore, an extra ball with the same number is placed back into the urn. This translates to
the following utility function

Um = Bam + Ym (17)

where B ∈ (0,∞) corresponds to the initial number of balls in the urn, and am is the
individual’s apriori distribution.Note that aswe are selecting the place following a probability
distribution rather than picking out balls, B does not need to be integer-valued.

3.8 TheWheel and BaseModel

Thewheel and basemodel simultaneously allocates all individuals partaking in themovement
process. Assume a base disc of perimeter 1 is divided into M place P1, ..., PM in the shape of
wedgeswhere Pm has perimeter lengtham seeFig. 2a such that

∑
m am = 1.On topof the base

disc, is an upper disc, the wheel, representing the N individuals in the form of N spikes; see
Fig. 2b. The angle between individuals Ii and I j is given by 2πθi j , where θi j ∈ [−1/2, 1/2]
can possibly be determined via a probability distribution. Note that θi j = −θ j i . When the
angles between the spikes have been set, thewheel is spun and rotates by an angle of θ selected
uniformly at random. Then, individual Ii moves to place Pm if and only if the corresponding
spike lands above the corresponding segment; see Fig. 2c.

The wheel was designed as a simple, idealised model of simultaneous allocation, enabling
the construction of distributions with specific properties. For instance, when h = 1 and
θ = 2π/N , all individuals in the population are alone, representing a movement process
where all individuals simultaneously move and eventually become separated. One could
imagine a population of animals moving dispersing from a central location with particular
requirements for levels of separation from others. This movement mechanism offers the
greatest flexibility and provides a clearer representation of complete aggregation amongst
individuals (θ = 0).
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Fig. 2 a M = 3 places with a1 = 1
2 , a2 = 1

4 , a3 = 1
4 . b represents the N = 3 individuals as spikes. The angle

between individuals Ii and I j is given by 2πθi j . In this case, θ13 = 1
4 = −θ31. c shows the simultaneous

placement of all individuals after the upper disc is spun on top of the base. In this case, individuals I1, I2, I3
move to places P3, P2, P2 respectively

4 Results

In this section, we first demonstrate how to calculate significant evolutionary predictors of
fixation probability. We then present simulation results on fixation probabilities for mutant
cooperative strategies from the games defined in Sect. 3.4, under the coordinated move-
ment mechanisms described in section 3.5, and their relationships with mean group size and
temperature in a well-mixed population on the complete decagon. This is followed by an
analytical explanation for certain trends observed in the simulations.

4.1 Evolutionary Measures Impacting the Fixation Probability

We first considered how T (15) relates to the expected group size. From (14), the expected
group size is given by

E[|G|] = E[X2
m]

E[Xm] = E[X2
m], (18)

since as we only considered well-mixed populations on complete graphs where each individ-
ual resides within their unique home vertex, the expected number of individuals on a given
place is one i.e. E[Xm] = 1. By substituting (18) into (15) and simplifying,

T = 1

N − 1
(E[|G|] − 1). (19)

(19) demonstrates that the aggregation measure T is directly related to the mean group size
and if either T or E[|G|] is known, the other can be calculated.

We analytically calculated the evolutionary measures considered in this paper on an N -
sized complete network, for h > 1, under the follow the majority, independent and wheel
processes. As an example, we show how we calculated the mean group size under follow the
majority. Here

|G| =
N∑

L=0

(λ)L (1 − λ)N−L
(
N

L

)(
N − L

N

(
(L + 1)2 + N − L − 1

N

)
+ N

L

(
L2 + N − L

N

))
,

=
N∑

L=0

(λ)L (1 − λ)N−L
((

N

L

)
+ 1

N

(
N

L − 1

)
+ L2(N − 2)

N

(
N

L

))
,

= 1 + λ

(
1 + (1 − 2

N
)((N − 1)λ + 1)

)
(20)
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where λ = N
h+N−1 . By using similar methods, the mean group size under independent

movement is given by

|G| = 1 + λ

(
2 − 1

N
(2 + λN − λ)

)
, (21)

and the mean group size for the wheel is given by

|G| = 1 + 1

N

(( N∑

� 2π
Nθ

�

(
(� 2π

Nθ
�)2 + 1

2
((� 2π

Nθ
�)2 + � 2π

Nθ
�)

(
Nθ

2π
(1 − � 2π

Nθ
�) − 1

)

+
� 2π
Nθ

�−1∑

L=2

(
L2 + L2 + L

2
(
Nθ

6π
(1 − L) − 1)

))
(λ)L (1 − λ)N−L

(
N − 2

L − 2

)
+ 2(λ − λ2)

N

)
.

(22)

The calculations for (21) and (22) can be found in the appendix leading to the above, labelled
(31) and (34).

By using (19), we were able to calculate T for the movement processes by using (20),
(21) and (22). For the follow the majority process

T = 1

N − 1
λ

(
1 + (1 − 2

N
)((N − 1)λ + 1)

)
. (23)

Similarly, T under independent movement is given by

T = 1

N − 1
λ

(
2 − 1

N
(2 + λN − λ)

)
, (24)

and T for the wheel is

T = 1

N (N − 1)

(( N∑

� 2π
Nθ

�

(
(� 2π

Nθ
�)2 + 1

2
((� 2π

Nθ
�)2 + � 2π

Nθ
�)

(
Nθ

2π
(1 − � 2π

Nθ
�) − 1

)

+
� 2π
Nθ

�−1∑

L=2

(
L2 + L2 + L

2
(
Nθ

6π
(1 − L) − 1)

))
(λ)L (1 − λ)N−L

(
N − 2

L − 2

)
+ 2(λ − λ2)

N

)
.

(25)

To calculate the temperature, we considered an N -sized, well-mixed population and all of
the possible ways two individuals Ii and I j can replace each other within an L-sized group
and used the relation τN = (N − 1)dN . We show how we calculated this measure under the
follow the majority process (the calculations for independent movement and the wheel can
be found in the appendix leading to (35), (36) and (37). A group of size L can form in one
of three ways:

• Ii and I j move with L − 2 individuals to an empty vertex;
• Ii moves with L − 2 individuals to I j ’s home vertex or vice-versa;
• Ii and I j move with L − 3 individuals to a place containing an individual.

We then obtain the following expression where the first summation represents the first two
cases and the second summation represents the third case.

τN = N − 1

( N∑

L=2

(λ)L−2(1 − λ)N−L
(
N − 2

L − 2

)(
1

N

)(
L

L − 1
(λ)2 + 2λ(1 − λ)

)
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+
N∑

L=3

(λ)L−1(1 − λ)N−L+1
(
N − 2

L − 3

)(
1

L − 1
− 1

N

))
,

where λ = N
h+N−1 . By expanding the summations and simplifying, the temperature for

follow the majority process on a complete N -sized network is given by

τN = λ + 1 − λ

N
− (1 − λ)N−1

N
. (26)

Using similar methods, the temperature under independent movement is given by equation
(27), while the temperature for the wheel is provided in Eqs. (28) and (29).

τN = 1 − (N + Nλ(λ − 1) − λ2)(N − λ)N−2

NN−1 . (27)

0 ≤ θ ≤ π
N :

τN = 1 −
(
1

N
(N − 1)(1 − λ)(1 − (1 − λ)N−1) + (1 − λ)N

+ θ

π

(
λ + 1

2
((1 − λ)(1 − (1 − λ)N−1) + (N − 1)(λ − 1)(λ))

))
. (28)

π
N ≤ θ ≤ 2π

N :

τN = 1 −
(
1

N

(
− 1 + (1 − λ)N + λ(λ + 2) − N (λ2 + λ − 1)

)

− θ

2π

(
− 1 + (1 − λ)N + λ(N + 3λ − 3Nλ)

))
. (29)

The detailed calculations for (27), (28) and (29) can be found in the appendix (35), (36) and
(37).

In Broom et al. [15], it was identified that temperature and fixation probability share a
linear relationship. Thiswas observed under conditions of high homefidelity and independent
movement. However, our analysis in section 4.2 demonstrates that this result generalises
across all values of h and for all movement processes. To support this analytically, Haq et
al. [31] showed that the fixation probability of a mutant cooperator on a complete N -sized
network under BDB dynamics is given by (6). Using the definition of the temperature from
(5), we can re-express (6) in terms of the temperature

ρA
1 = 1

1 + ∑N−1
j=1

∏ j
k=1

R+kV (
TN
N−1 )

R−C+(k−1)V (
TN
N−1 )

. (30)

(30) shows that by simply knowing the temperature, the cooperator’s fixation probability
can be calculated, without knowing the governing movement mechanism. Therefore, in the
models considered in this paper for the Public Goods game, temperature matters more than
the governing movement mechanism and is the most significant measure in the evolutionary
process.

Similarly, in Haq et al. [31], it was shown that under independent movement, the fixation
probability of a mutant dove on a complete N -sized network is given by (7). It is clear that
unlike (6), the fitnesses cannot be expressed in terms of dN and, therefore, cannot be re-
expressed in terms of the temperature. This implies that the governing movement procedure
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plays a more significant role in the Hawk-Dove game than in the Public Goods game, hence
the presence of the non-linear trends in Fig. 7. A similar analysis holds for the Stag-Hunt
game, where the fitnesses will not simply depend on dN , but other significant factors such as
the threshold value.

4.2 Numerical Results

In this section, we conducted similar simulation methods to those used in Haq et al. [31]
to investigate evolutionary processes involving the games defined in Sect. 3.4 and whether
mean group size (14) and temperature (4) continue to serve as strong predictors of fixation,
under models involving row-dependent movement.

One simulation is delineated as follows:

• The decagon complete network is formed using the iGraph library (Csardi and Nepusz
[38]).

• The mutant is randomly placed on one of the vertices.
• Every individual moves (or not) from their home vertex according to the model as

described in Sect. 3.5. Groups are formed and multiplayer games are played.
• Individuals return to their home places.
• Each individual moves (or not) and groups are formed and the dynamic process occurs.

No games are played. Instead, one individual is selected to reproduce an offspring that
will replace another random member of the group (or its parent if the parent is alone)
explained in Sect. 3.2.

• The simulation ends once the mutant fixates in the population or becomes extinct.
• This process is averaged over 1,000,000 cases to minimise statistical variability.

Figure 3 illustrates the fixation probability of a mutant cooperator and defector in the stag-
hunt game under the Polya-urn and wheel processes on the complete decagon. Figure3a and
b show that for the Polya-urn processes where B �= 0, the cooperator’s fixation probability
reaches its maximum when h = 1, meaning that all members of the population participate
in the movement process. This leads to the formation of groups of varying sizes that reach
the threshold, enabling members to share the reward among themselves. At this point, the
cooperator’s fixation probability exceeds 1/N = 0.1, whereas Fig. 3e indicates that the
corresponding fixation probability for the defector remains below 1/N . This demonstrates
the significant impact of row-dependent movement in the Stag-Hunt game, as it can raise
the cooperator’s fixation probability not only above neutrality but also above the defector’s,
thereby facilitating the evolution of cooperation. Corresponding figures are shown in Haq
et al. [31] for the Public Goods game. It was shown that under this social dilemma game,
cooperation is always below neutrality for all movement processes. However, the results in
the Stag-Hunt game demonstrate a stronger influence of the movement mechanisms, as these
can raise the cooperator’s fixation probability not only above neutrality, but also above the
defector’s. This is due to the nature of the stag-hunt game, where cooperators can generate
rewardswhen in groups that reach the threshold.However, in the public goods game, defectors
always benefit from the presence of cooperators, regardless of whether the threshold is met,
thereby undermining the advantages of cooperative behaviour.

We see a similar trend in Fig. 3c and g which show an important example where the wheel
process significantly influences the evolution of cooperation.When h = 1 and θ = π/10, the
cooperator’s fixation probability is above 0.15, whereas the defector’s corresponding fixation
probability is below 0.02. This angle proves very beneficial for cooperators and allows them
to meet each other in pairwise groups that meet the threshold to produce the reward. Under
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Fig. 3 The fixation probabilities of the cooperator and defector in the stag-hunt game on the complete decagon
under the Polya-urn and wheel processes. (the payoffs are set as R = 10,C = 1, V = 12 and L = 2). (a), (b),
(c) and (d) show the fixation probability of a mutant cooperator in a population of defectors and vice-versa for
(e), (f), (g) and (h). Figures (a), (b), (c) and (d) represent the cooperator’s fixation probability and figures (e),
(f), (g) and (h) represent the defector’s. For the Polya-urn, in (a) and (e) we set B = 0 (follow the majority),
B = 2, B = 6 and B = 10,000 (a sufficiently large value to mirror independent movement). For the wheel,
in (c) and (g) we set θ = 0 (follow the majority), θ = 2π

N (represents a near complete dispersal process),
θ = π

N . For (b) and (f), we plot the fixation probability against B (for the Polya-urn) and set h = 1, h = 20
and h = 500. For (d) and (h), we plot the fixation probability against θ (for the wheel) and set h = 1, h = 20
and h = 500
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Fig. 4 Themean group size and temperature of individuals within the a well-mixed population on the complete
decagon for varying h under distinct Polya-urn processes and wheel processes. (a) and (b) show the mean
group size and (c) and (d) show the temperature. We set B = 0 (follow the majority), B = 2, B = 6 and
B = 10,000 (a sufficiently large value of B representing independent movement). We also set θ = 0 (follow
the majority), θ = 2π

N (represents a near complete dispersal process) and θ = π
N

these conditions, defectors mostly find themselves in pairwise groups that either contain
another defector or a single cooperator, in either case, the reward cannot be produced and the
defector’s fitness remains relatively low. Therefore, there is a significant disparity between
the cooperator’s and defector’s fixation probabilities.

As h increases, the cooperator’s fixation probability gradually decreases. This is due to
individuals being more likely to remain on their home vertex and, therefore, less likely to
move and interact with one another. Therefore, the likelihood of cooperators being in groups
where the threshold is reached diminishes, while defectors have a higher relative fitness when
all individuals are alone, thereby reducing the cooperator’s fixation probability.

For the follow the majority process (B = 0), the cooperator’s fixation probability is at its
lowest compared to the othermovement processes. This is due to all members partaking in the
movement process aggregating on the same vertex, allowing defectors to exploit cooperators
by receiving a share of the produced reward without incurring any cost. Under this movement
process, defectors have a greater relative fitness than cooperators, thereby minimising the
cooperator’s fixation probability. An important result in this context is that herding proves
quite detrimental to cooperators, as it reduces their fixation probability below the neutral
benchmark of 1

N and raises the defector’s above this level, thereby favouring the evolution of
defection. As h rises, the fixation probability gradually rises, as individuals are more likely to
be in smaller groups, until h reaches a level where individuals are most inclined to remain on
their home vertex. As h continues to increase, the fixation probability falls as cooperators are
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Fig. 5 The fixation probability plotted against the mean group size for a well-mixed population in the Public
Goods, Hawk-Dove and Stag-Hunt games on the complete decagon graph. As we vary h, we plot the corre-
sponding fixation probability and mean group size values against each other. Figures (a), (c) and (e) illustrate
Polya-urn processes where we set B = 0 (follow the majority), B = 2, B = 6 and B = 10,000 (a sufficiently
large value of B representing independent movement). (b), (d) and (f) show wheel processes where we set
θ = 0 (follow the majority), θ = 2π

N (represents a near complete dispersal process) and θ = π
N

always alone and continue to pay a cost, unlike defectors who do not and, therefore, maintain
a higher relative fitness.

Figure 4 illustrates the mean group size and temperature under distinct Polya-urn and
wheel processes for varying values of h on the complete decagon graph. In Fig. 4a, the mean
group size reaches its maximum when h = 1 across all movement processes. This is because
all individuals participate in the movement process at this value of h, meaning that under the
follow the majority process, the mean group size is equal to the population size. However,
as the value of B increases, the value of the mean group size decreases. This is due to
the movement process gradually shifting from a deterministic type to a stochastic process,
eventually becoming a completely random movement process as the number of balls in the
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Fig. 6 The fixation probability plotted against the temperature for awell-mixed population in the PublicGoods,
Hawk-Dove and Stag-Hunt games on the complete decagon graph. As we vary h, we plot the corresponding
fixation probability and temperature values against each other. Figures (a), (c) and (e) illustrate Polya-urn
processes where we set B = 0 (follow the majority), B = 2, B = 6 and B = 10,000 (a sufficiently large
value of B representing independent movement). (b), (d) and (f) show wheel processes where we set θ = 0
(follow the majority), θ = 2π

N (represents a near complete dispersal process) and θ = π
N

urn increases. The trends in Fig. 4b for the wheel process are largely similar to the Polya-urn,
except when the angle between the spikes is approximately 2π

N and h = 1. At this point, all
individuals within the population are nearly always alone. Given the significant effects of the
movement processes on the mean group size, we considered the impact of mean group size
on the fixation probability of cooperative strategies, as shown in Fig. 5.

Figure5 illustrates the fixation probabilities of cooperative strategies plotted against the
mean group size under the Polya-urn andwheel processes on the complete decagon. Figure5a
and b show the fixation probability of a mutant cooperator in the public goods game. As the
mean group size increases, the cooperator’s fixation probability decreases for all movement
processes. This result is expected, as larger group sizes lead to interactions between coop-
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erators and defectors, allowing defectors to gain rewards and thereby reducing the relative
fitness of cooperators. Figure5c and d depict the fixation probability of a mutant dove. In
contrast, as the mean group size increases, the fixation probability also increases. This occurs
because hawks are more likely to be grouped together as the group size grows, causing them
to endure greater costs, which lowers their relative fitness and, consequently, raises the dove’s
fixation probability. Figure5e and represent the cooperator’s fixation probability in the stag-
hunt game. Initially, as the mean group size increases, the fixation probability rises until the
mean group size reaches the threshold level (set as L = 2). This benefits cooperators, as they
either find themselves in groups with another cooperator, enabling them to produce and share
the reward, or with a defector, in which case the reward cannot be produced. Other values
of L would change the mean group size where the maximum fixation probability occurs,
constrained by the group formations of the considered movement process. However, as the
mean group size continues to increase, the fixation probability declines. This is because larger
group sizes do not provide significant additional benefits to cooperators beyond the threshold
level and instead allow defectors to join cooperative groups and receive a share of the reward.

Figure4c and d show the temperature for various Polya-urn (c) and wheel (d) processes
for varying values of h on the complete decagon graph. The trends observed here are very
similar to those in Figs. 4a and b, as it has been previously demonstrated that temperature
increases with mean group size (Broom et al. [15]). This unsurprisingly holds under the
considered movement processes. Low values of h correspond to high levels of movement
within the population, therefore when h = 1, the temperature is at its highest, as individuals
are more likely to be replaced by others due to frequent interactions (except for the case
where θ = 2π

N , as individuals are nearly always alone, the temperature is at its lowest). As h
increases, individuals are less likely to move and, therefore, less likely to interact with one
another, leading to a decrease in temperature across all of the movement processes.

Figure6 depicts the fixation probabilities of cooperative strategies plotted against the tem-
perature under the Polya-urn and wheel processes on the complete decagon. Figure6a and b
show the fixation probability of amutant cooperator in the PublicGoods game.As the temper-
ature increases, the cooperator’s fixation probability decreases for all movement processes.
This is because higher temperatures indicate greater levels of mixing between cooperators
and defectors, enabling defectors to gain rewards from cooperators. Notably, the different
movement processes overlap, indicating that, regardless of the movement mechanism, the
temperature consistently predicts the cooperator’s fixation probability. In other words, the
temperature is the most significant predictor in the Public Goods evolutionary process.

Furthermore, from Fig. 6c and d, we observe that in the Hawk-Dove game, as the temper-
ature increases, the dove’s fixation probability increases. High temperature levels correspond
to low values of h and, therefore, high levels of interaction between doves and hawks. As
hawks interact with one another, they incur greater costs, which reduces their relative fitness
and, consequently, increases the dove’s fixation probability. Additionally, the relationship
between temperature and the dove’s fixation probability is linear for small temperature val-
ues but breaks down as temperature increases, particularly for the follow themajority process.
Low temperatures, correspond to high values of h, meaning many individuals are not partak-
ing in the movement process and are either alone or in small pairwise groups. As temperature
increases, more individuals become mobile, leading to the formation of groups of various
sizes, particularly for the follow the majority process, which significantly disadvantages
hawks and causes the linearity breakdown. Thus, in the Hawk-Dove game, at higher temper-
atures, the governing movement process holds an important role in the evolutionary process.

Furthermore, from Fig. 6e and f, we observe that in the Stag-Hunt game, the cooperator’s
fixation probability increases as the temperature rises, until it reaches a levelwhere thefixation
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probability begins to decrease. Low temperature values indicate limited interaction between
individuals. Consequently, the relationship between temperature and fixation probability is
linear, similar to that observed in theHawk-Dove game.As temperature increases, individuals
are more likely to move and interact in pairwise groups, when cooperators interact with at
least one other cooperator, they can produce the reward, leading to an increase in fixation
probability. When B = 0 or θ = 0, the fixation probability declines rapidly as temperature
rises, due to the deterministic nature of the movement process, which causes individuals to
herd together. This herding effect is disadvantageous to cooperators, reducing their relative
fitness and, consequently, their fixation probability. When B �= 0 or θ �= 0, the decrease
in fixation probability is more gradual, as cooperators move probabilistically and can still
engage in beneficial pairwise interactions.

5 Discussion

In this paper, we have extended the modelling framework developed in Broom and Rychtar
[14], by utilising the evolutionary model introduced in Haq et al. [31] to not only examine the
effects of row-dependent movement (Broom et al. [30]) on predictors of fixation probability,
but also to implement the multiplayer Stag-Hunt game within the evolutionary context of the
territorial raider model. In previous models, (Broom et al. [15]; Pattni et al. [25]; Schimit et
al. [26]) individuals moved independently, meaning that only random movement was con-
sidered in the prior analysis of predictors of fixation probability. Also, individuals primarily
interacted via the Public Goods, Hawk-Dove or Fixed Fitness Games. We have considered a
different social dilemma in the form of the multiplayer Stag-Hunt game, where selection can
favour the evolution of cooperation depending on the movement mechanism governing the
process (unlike in the Public Goods game, where cooperation cannot evolve in well-mixed
populations).

We first demonstrated in Sect. 4.1 how previously defined measures of aggregation from
Broom et al. [30], specifically T (15) relate to the mean group size and showed how T , mean
group size and temperature can be calculated. Previouswork byBroom et al. [15] and Schimit
et al. [26] explained the importance of these predictors, and our aim was to demonstrate that
these measures not only hold theoretical significance, but can also be practically calculated
for various movement processes. In Sect. 4.2, we examined the Stag-Hunt game and showed
that herding can be significantly detrimental to the evolution of cooperation, to the extent that
selection opposes its evolution. However, other movement processes raise the cooperator’s
fixation probability above that of the defector and above the neutral benchmark, thereby
supporting the evolution of cooperation. A significant example of this was shown in the
wheel process. In the Stag-Hunt game, row-dependent movement plays a more influential
role than in the Public Goods game considered by Haq et al. [31]. Dispersal can also be
detrimental to cooperators as it ensures cooperators partaking in the movement process,
do not interact with each other, reducing their chances of being in a group that meets the
threshold.

We also considered the effects of various movement processes on the mean group size and
temperature and, in turn, their influence on fixation probability and have observed patterns in
our model that have not been previously observed in evolutionary graph theory (Pattni et al.
[39] and Traulsen et al. [40]). In the Public Goods game, we demonstrated that temperature
is a stronger predictor of fixation than mean group size across all levels of h, regardless of the
movement process. Our findings indicated that temperature maintains a linear relationship
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with fixation probability for all movement processes, signifying its importance as the most
crucial parameter in the evolutionary process. This was first identified by Broom et al. [15]
but only for high levels of home fidelity and independent movement. Our analysis extends
this work by incorporating more complex movement mechanisms, demonstrating that tem-
perature’s predictive property remains robust even when individuals move in a coordinated
manner. In the Hawk-Dove game, we showed that temperature continues to be a stronger
predictor of fixation. However, due to the greater complexity of the game compared to the
public goods game, the linear relationship between temperature and fixation breaks down as
the temperature rises, with a similar pattern observed in the Stag-Hunt game.We provided an
analytical analysis of this relationship, highlighting that while temperature is generally a reli-
able predictor, the nature of the game and the governing movement process play significant
roles in determining the relationship between temperature and fixation.

There are several directions for future work. Previous research by Schimit et al. [26] inves-
tigated predictors of fixation probability in the context of complex graph structures, where
individuals did not reside within well-mixed populations. Since our aim was to extend the
analysis carried out by Haq et al. [31], which focused exclusively on complete networks and
row-dependent movement mechanisms, the analysis in this paper is also limited to complete
graphs. We intend to address this limitation by exploring non-complete graph structures to
examine not only the effects of coordinated movement on fixation, but also the influence of
the key predictors discussed in this paper. Another potential direction could involve investi-
gating the effects of row-dependentmovement within the context of the generalised territorial
raider model developed by Pattni et al. [25], which accommodates more complex evolution-
ary models, where individuals reside within subpopulations. Alternatively, new movement
mechanisms could be explored where individuals move to places containing the largest num-
ber of cooperators. However, similar movement distributions are already characterised in
other versions of the territorial raider model that consider history-dependent movement (Pat-
tni et al. [28]; Erovenko et al. [29]; Pires et al. [41]; Erovenko et al. [33]), where individuals
prefer to remain within groups that enhance their fitness. A more complex avenue would
involve the simultaneous consideration of row-dependent and history-dependent movement.

Appendix

Mean group size calculation

When we calculated the mean group size under independent movement, we considered a
process where L individuals partake in the movement process. These individuals can either
move to an empty place or to a place already containing an individual that did not move. The
mean group size under independent movement is given by

|G| =
N∑

L=0

(
L

N

L∑

j=0

(
1

N

) j(N − 1

N

)L− j(L

j

)
( j)2

+
(
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N

) L∑

j=0
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) j(N − 1

N

)L− j(L

j

)
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(
N

L

)
.

By expanding the summations and simplifying, we have

|G| = 1 + λ

(
2 − 1

N
(2 + λN − λ)

)
. (31)
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Therefore, by using (19), T, under independent movement is given by

T = 1

N − 1
λ

(
2 − 1

N
(2 + λN − λ)

)
. (32)

For the wheel process, we first calculated T (15) and then used (19) to then determine the
mean group size. In an N -sized, well-mixed population, there are the various ways Ii and I j
can be together. For instance, Ii and I j may both partake in the movement process and move
to the same place. Alternatively, Ii may partake in the movement process and move to I j ’s
home vertex, while I j does not partake in the movement process and remains on their home
vertex, or vice versa.

P(Ii and I j are together) =
N−1∑

L=2

jm∑

j=1

(L − j)(1 − θ j N

2π
)(λ)L (1 − λ)N−L

(
N − 2

L − 2

)

+
N∑

L=1

(2)(λ)L(1 − λ)N−L

(
N − 2

L − 1

)
(
1

N
).

The first summation represents the probability of individuals Ii and I j of distance j spikes,
being together at the same place and jm = min(� 2π

Nθ
�, r) represents the cut-off point where

this no longer holds. By expanding the summations and simplifying, T is given by
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(33)

Therefore, by using (19), the mean group size is

|G| = 1 + 1
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(34)

Temperature calculations

When calculating the temperature of an individual under independent movement, it was
simpler to consider the probability of an individual being alone, as the temperature is also
equal to 1− P(alone). In an N -sized, well-mixed population, there are various ways Ii can be
alone. For instance, Ii may not partake in the movement process, remain on their home vertex
and have no one else move to the same place. Alternatively, Ii may partake in the movement
process, move to their home vertex, and find themselves alone, with no other individuals
moving to the same vertex. Another possibility is that Ii and I j both partake in the movement
process, Ii moves to I j ’s home vertex, and is alone, provided no other individuals move to
the same place.
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P(Ii is alone) =
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Expanding the summations and simplifying,

P(Ii is alone) = N (N + Nλ(λ − 1) − λ2)(N − λ)N−2(1 − λ)N

(N − Nλ)N
.

Therefore, the temperature under independent movement is given by

τN = 1 − (N + Nλ(λ − 1) − λ2)(N − λ)N−2

NN−1 . (35)

Using a similar approach to calculate the temperature for the wheel, we considered θ in two
possible ranges 0 ≤ θ ≤ π

N and π
N ≤ θ ≤ 2π

N as this includes the cases where all spikes can
aggregate, to complete separation. Consider individual Ii where 0 ≤ θ ≤ π

N :

• Ii partakes in the wheel process and moves to their home vertex and no one else joins
them.

• Ii partakes in the wheel process and moves to someone else’s vertex, alone.
• Ii does not partake in the wheel process and stays on their home vertex, alone.
• No one in the population partakes in the movement process, therefore Ii remains alone.

P(Ii is alone) = 1

N
(N − 1)(1 − λ)((1 − λ)N−1 − 1) + (1 − λ)N

+ θ

π

(
λ + 1

2
((1 − λ)(1 − (1 − λ)N−1) + (N − 1)(λ − 1)(λ))

)
.

By expanding the summations and simplifying, the probability of being alone is
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and, therefore, the temperature for 0 ≤ θ ≤ π
N is given by

TN = 1 −
(
1

N
(N − 1)(1 − λ)(1 − (1 − λ)N−1) + (1 − λ)N

+ θ

π

(
λ + 1

2
((1 − λ)(1 − (1 − λ)N−1) + (N − 1)(λ − 1)(λ))

))
.

(36)

By using very similar methods, the temperature for π
N ≤ θ ≤ 2π

N is given by

τN = 1 −
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. (37)
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