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1 Introduction

Evolutionary game theory has demonstrated its versatility as a multifaceted mathematical mod-
elling tool for understanding the evolution of, and behaviour of biological populations. The
classical evolutionary models focused on infinite, well-mixed populations, assuming equal prob-
abilities of interaction among individuals, often involving pairwise contests (Maynard Smith
1982). In certain scenarios, pairwise interactions were absent, and instead, games involving
the entire population, known as ”against the field” games, were modelled. The original models
of evolutionary game theory introduced the concept of an individual’s fitness being dependent
on the frequency of their types within the population. These models employed either a static
analysis of Evolutionarily Stable Strategies (ESS) (Maynard Smith and Price 1973), the biolog-
ical extension of the Nash Equilibrium from classical game theory (Nash, 1951) or a dynamic
analysis involving the replicator equation (Hofbauer et al. 1979; Hofbauer and Sigmund 1998;
Taylor and Jonker 1978) which examined how the population composition changes over time.

While simple models such as the sex ratio game have been utilised to explain biological phe-
nomena (Darwin, 1874; Fisher, 1930; Hamilton, 1967), they rely on the unrealistic assumption
of infinite populations as real populations are finite in size. Consequently, the Moran process
(Moran 1958; Moran 1962) was adapted to incorporate frequency-dependent fitness, leading
to the study of evolutionary processes in finite populations. More recently, the approach of
modelling the evolution of finite populations through a graph, where individuals exclusively
interact with their neighbours, was introduced as evolutionary graph theory (Lieberman et al.
2005). In this framework, individuals are situated on the vertices of a graphical structure and
engage in pairwise contests with their connected neighbours. These interactions determine the
individuals’ fitness and govern the population’s dynamics during the evolutionary process. The
significant advantage of evolutionary graph theory lies in its ability to consider a wide range of
population structures (Antal and Scheuring 2006; Broom and Rychtar 2008; Maciejewski 2014;
Hindersin and Traulsen 2014; Cuesta et al. 2017). Both population structure and evolutionary
dynamics play influential roles in population evolution (Santos and Pacheco 2006; Broom and
Rychtar 2008; Voorhees 2013; Tkadlec et al. 2020); in fact, heterogeneous structures are pivotal
in facilitating the formation of clusters of cooperators (Li 2013).

However, a limitation of evolutionary graph theory is its pairwise modelling of interactions rather
than considering a more realistic arbitrary multiplayer game scenario, thus lacking adaptability
and realism. To address this limitation, recent research papers have developed a comprehensive
modelling approach that allows for the study of structured population evolution involving mul-
tiplayer contests which we denote as the Broom-Rychtár̂ framework (Broom and Rychtar 2012,
Broom et al. 2015; Broom et al. 2019). Evolutionary multiplayer games were first introduced
by Palm (1984) and further developed by Broom et al. (1997), see also Bukowski and Miek-
isz (2004). These contests between individuals employ standard games such as Public Goods,
Hawk-Dove, and Prisoner’s Dilemma (Ohtsuki et al. 2006; Santos et al. 2008; Veelen and Nowak
2012; Hadjichrysanthou et al. 2011, Broom and Rychtar 2013). A typical application of the
framework is in Broom et al. (2015) which utilises the territorial raider model (an extension
of the Broom-Rychtár̂ framework) as the underlying structure of the population and models
the interactions between individuals using three games: Public Goods, Hawk-Dove, and Fixed
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Fitness under a standard BDB dynamics (invasion process) where an individual is selected to
reproduce first with probability proportional to their fitness relative to the total population.
Following this, the death event occurs where the offspring randomly replaces another member
of the parent’s group (see section 2.3). Within this model, individuals move independently i.e.
without any influence from past movements (history-independent) nor from other individuals’
movements (row-independent). This type of movement has been frequently considered (Broom
et al. 2015; Pattni et al. 2017; Schimit et al. 2019; Schimit et al. 2022) alongside history-
dependent movement models (Pattni et al. 2018; Erovenko et al. 2019). What has yet to be
considered is row-dependent movement, where individuals move in a manner in which they take
into account the current movement decisions of other individuals within the population. Broom
et al. (2020) developed various mechanisms that represent coordinated movement. These re-
alistic movement mechanisms characterise behaviours displayed by animals (Buhl et al. 2006;
Marker et al. 2008) which was explained in detail in Broom et al. (2020).

The purpose of this paper is to develop a methodology to enable us to embed these newly
developed row-dependent movement models from Broom et al. (2020) into the evolutionary
setting of Broom et al. (2015) on complete graph structures. By doing this, we explore the
consequences coordinated movement has on the evolution of cooperation.

2 The Broom-Rychtár̂ framework

The modelling framework originated in Broom and Rychtar (2012) and is a very general and
versatile methodology. However, we omit the intricate details which can be found in Broom
and Rychtar (2012). The framework contains three core components: the population structure,
the evolutionary dynamics and the multiplayer games. We first explain the fully independent
model of this framework in which individuals move independently of each other and of any past
movements and a particular case from the framework, the territorial raider model introduced in
Broom and Rychtar (2012) and further developed (Broom et al. 2015; Pattni et al. 2017).

2.1 The fully independent model

We first describe the fully independent model. Consider a population of N individuals I1, ..., IN
who can move around M places P1, ..., PM . The probability of individual In being at place Pm

is denoted by pnm; see Figure 1 for a visual representation using a bi-partite graph. Individuals
move along the graph according to their own movement distributions and form groups on the
vertices of the graph. Let G denote a group of individuals, then χpm,Gq, the probability of
group G forming at place Pm is given by

χpm,Gq “
ź

iPG

pim
ź

jRG

p1 ´ pjmq. (1)

When a group of individuals is formed, they interact with one another via a multiplayer game.
Individual In receives a payoff that depends upon the composition of the group G itself and the
place Pm the group is present in, denoted by Rn,m,G. Individual In’s average fitness is calculated
by considering all payoffs they can receive averaged over all possible groups and places,
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Fn “
ÿ

m

ÿ

G
nPG

χpm,GqRn,m,G. (2)
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Figure 1: The fully independent model from (Broom and Rychtar 2012). There are N individuals who
are distributed over M places such that In visits place Pm with probability pnm. Individuals interact
with one another when they meet, for example, I1 and I2 can interact with one another when they meet
in P1

2.2 The territorial raider model

Different examples using the fully independent model were developed in Broom and Rychtar
(2012). The most significant of these is the territorial raider model, which has been extensively
explored (Broom et al. 2015; Pattni et al. 2017; Schmit et al. 2019). This model acts as a
basis for the work in this paper. In the territorial raider model, there are N individuals who
can move and interact with other individuals at M places. It is assumed individual Ii lives
at place Pm throughout the entire evolutionary process. In the original territorial raider model
from Broom and Rychtar (2012) there was a one-to-one correspondence between individuals and
places, although this was generalised in Pattni et al. (2019). The amount of time an individual
spends on their home vertex is governed by a global home fidelity parameter h, which measures
the preference individuals have towards staying on their home vertex. The higher h is, the more
likely individuals are to stay at home and, therefore, less likely to move and interact with other
individuals and vice-versa. Given an individual Ii with d neighbouring places, the probability
of Ii staying home is h{ph` dq and moving is d{ph` dq. If h “ 1, this represents an indifference
individuals have between all reachable places and, therefore, equally likely to visit any of them.
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Figure 2: The territorial raider model of (Broom and Rychtar 2012 and Broom et al. 2015). (a) Population
structure is represented using a graph where vertices represent individuals and places. Individual In lives
in place Pn and can visit any neighbouring places. For example, the home place of I1 is P1 but can
visit places P2,P3, and P4. (b) An alternative visualization on a bi-partite graph where individuals and
places are separated. (c) An example of the territorial raider model for a well-mixed population of three
individuals. The probability any individual stays at home is h

h`2 and the probability they move to a

neighbouring place is 1
h`2 .

2.3 Evolutionary dynamics

An evolutionary graph (Lieberman et al. 2005; Nowak 2006; Pattni et al. 2015; M:oller et al.
2019) is a graph with an associated weighted adjacency matrix W “ pwijq where wij P r0, 1q is
referred to as the replacement weight which governs which members of the population can replace
each other. Every vertex vn of the evolutionary graph is occupied by exactly one individual and
if wij ą 0, then the individual on vi can replace the current individual on vj by placing a copy
of itself onto the vertex. The weights are often selected to ensure that the evolutionary graph is
strongly connected i.e. there is a finite path between vertices vi and vj .

A general set of evolutionary dynamics for the Broom-Rychtár̂ framework, analogous to the
corresponding evolutionary graph theory dynamics, was developed in Pattni et al. (2017). We
note that this process is an idealisation of the original evolutionary process described in Broom
et al. (2015), which is represented by the simulations in section 5, allowing for analytical results
to be considered. It was identified in Pires et al. (2023) that under certain circumstances, such
as highly variable fitnesses or large self-weights, there can be significant differences between
these outcomes for some dynamics, including BDD (but not BDB).

In this paper, we consider two dynamics where selection acts on different events. The first is
BDB, a birth-death process where selection acts on the birth event, otherwise known as an
Invasion Process (Lieberman et al. 2005) which has been frequently utilised in evolutionary
graph theory, and adjusted to the modelling framework in Broom et al. (2015).

First, an individual Ii is selected to reproduce with probability proportional to their fitness i.e.

bi “
Fi

ř

k Fk
. (3)

The offspring then replaces another individual Ij with probability
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dij “
wij

řN
k“1wik

. (4)

The other dynamic process is BDD (Masuda 2009), where selection acts on the death event. In
this evolutionary dynamic, individual Ii is randomly selected to reproduce with probability

bi “
1

N
. (5)

The offspring then replaces another individual Ij with probability

dij “
wijF

´1
j

řN
k“1wikF

´1
k

. (6)

The replacement weights within this paper are based on the assumption that an offspring of
individual Ii will replace individual Ij with probability proportional to the time Ii and Ij spend
together. The offspring of Ii can also replace its parent Ii, and it does so with probability
proportional to the time Ii spends on its own. When i ‰ j The probability of individuals Ii
and Ij meeting is given by summing all χpm,Gq over all m such that Ii, Ij P G. We assume
that Ii spends an equal amount of time with all other members of group G, therefore we weight
by 1{p|G| ´ 1q as there are |G| ´ 1 other members of the group. However, when i “ j, we sum
χpm,Gq over all m such that G “ tiu. Here there is no need to weight χpm,Gq because Ii is
alone. The replacements weights are thus given as

wij “

$

’

’

’

&

’

’

’

%

ř

m

ř

G
i,jPG

χpm,Gq

|G|´1 , i ‰ j,

ř

m
χpm, tiuq, i “ j.

(7)

As our work in this paper is only focused on complete graphs, dij is the same for all individuals,
as all individuals are equally likely to be replaced i.e. we can simply write dij as d (and sometimes
as dN , when we consider the influence of varying population size on d, since d depends upon N).

2.4 The fixation probability

To determine the likelihood of the evolutionary success of a particular strategy within a finite
population, we calculate its fixation probability. The fixation probability is regarded as the most
significant quantity of a finite evolutionary process. From Broom et al. (2015), the fixation
probability of a type A individual is defined by the following recurrence relation

pAS “
ÿ

S1Ăt1,2,...,Nu

PSS1pAS1 , (8)

with boundary conditions
pAH “ 0, (9)

pAN “ 1. (10)
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Here pAS is the fixation probability of a type A individual from the state S, where S represents
the composition of the population with a certain number of type A individuals. PSS1 is the
probability of the population transitioning from state S which contains a given number of type
A individuals. to a new state, S’ which contains a new number of type A individuals.

2.5 Multiplayer games in structured populations

We used two different multiplayer games to describe the interactions between individuals. The
Public Goods and Hawk-Dove games. Each of the games describes a contest between two
different types of individuals, A and B. Using these games, we will describe an evolutionary
process of a single type A individual within a population of Bs and vice-versa to determine the
fixation probability for both types of individuals.

2.5.1 The Multiplayer Public Goods Game

The multiplayer public goods game consists of two types of individuals, cooperators (A) and
defectors (B). The cooperator pays a cost of C which is shared among the rest of the group as
a reward V but not shared among the individual who paid the cost. Defectors pay no cost and
cooperators pay a cost even when they are alone. After a game is played between a group of a
cooperators and b defectors, the payoffs for a cooperator and defector are respectively

RA
a,b “

$

’

&

’

%

R ´ C, a “ 1,

R ´ C `

ˆ

a´1
a`b´1

˙

V, a ą 1,
(11)

RB
a,b “

$

’

&

’

%

R, a “ 0,

R `

ˆ

a
a`b´1

˙

V, a ą 0.
(12)

where R is the background payoffs individuals receive unrelated to the games. The public good
game presented here is one of many variations with other cooperative strategy games being
included in Archetti and Scheuring (2012).

2.5.2 The Multiplayer Hawk-Dove Game

The Hawk-Dove game was developed by Smith and Price (1973) and attempts to explain the
occasional use of violence in contests over valuable resources between animals such as in pop-
ulations of red deer (Clutton-Brock and Albon, 1979). A represents the Hawk strategy, and B
the Dove strategy. When individuals meet, they compete for a reward V . If all individuals in
the group are Doves, then they all split the reward equally. If any Hawks are present, then the
Doves concede and the Hawks fight, with the winner receiving the reward of V while the losing
Hawks pay a cost of C. All individuals receive a background payoff of R, a reward gained from
activities unrelated to the contests. In a group of a Hawks and b Doves, the average payoffs are
given by
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RA
a,b “ R `

V ´ pa ´ 1qC

a
, (13)

RB
a,b “

#

R, if a ą 0,

R ` V
b , if a “ 0.

(14)

3 Row-dependent movement

Row-dependent movement refers to the type of movement where the moving individual is in-
fluenced by the movement of other individuals. Various row-dependent movement mechanisms
which characterise herding and dispersal behaviour were developed (Broom et al. 2020). These
models serve two purposes; firstly to represent certain movement mechanisms that lead to a
particular distribution of individuals over the places, and secondly to model movement dis-
tributions with certain coordinated movement properties. We will consider a target apriori
distribution, denoted by am, representing the probability of a randomly selected individual go-
ing to any particular place. Our processes will be designed to achieve this target whilst moving
non-independently, for example to maximise herding or dispersal. Processes where the target
distribution matches the apriori distribution were called faithful (Broom et al. 2020).

For example, for the territorial raider model on a complete graph with M vertices, the apriori
distribution for any individual staying at home is h

h`M´1 and moving to a specific neighbouring

vertex is 1
h`M´1 . More generally, we can select an appropriate apriori distribution to any given

movement scenario.

We first consider two movement processes where individuals are placed sequentially based on
their utility functions (Broom et al. 2020). It is assumed that there is a set of utility functions
tUmu based upon several place characteristics. The form of the utility function Um varies
according to the movement distribution governing the evolutionary process. The first type of
movement we consider is deterministic movement, where individuals simply move to the location
which provides them with the most utility. The second is the stochastic counterpart, in the form
of a polya-urn model, where an individual will have a higher probability of moving to a place
that provides them with a larger utility. Then we consider a more novel type of movement, that
simultaneously places all moving individuals.

3.1 Deterministic movement: follow the majority

In this process, individual allocation to places is decided sequentially. This represents a si-
multaneous movement of the group, however, so that the first step of the process is to assign
the ordering uniformly at random over all possible orderings (or if simulating a large popula-
tion, make selection among the remaining individuals at each step of the sequence with uniform
probability).

The type of deterministic movement we consider is the follow the majority movement process
where the first individual moves to a place according to its apriori distribution and subsequent
individuals simply move to the location containing the largest number of individuals. This
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mathematically translates to any increasing function, but the simplest example was considered
(Broom et al. 2020) which we also use. The utility an individual receives from place Pm is given
by

Um “ Ym ` 1, (15)

where Ym is the current number of occupants on place Pm.

For a well-mixed process (equivalent to a territorial raider model on a complete graph with
h “ 1) this leads to all individuals being in a single group, the location of which follows the
apriori distribution. We note that if h ‰ 1 we need a variant of this process to achieve the target
apriori distribution, as we see in section 4.1.

3.2 Probabilistic movement: the polya-urn

Here, we consider a stochastic counterpart to follow the majority, where individuals move to
a place Pm with probability proportional to their utility function i.e. an individual moves to
place Pm with probability Um{

ř

k Uk. This probabilistic model is represented by a standard
urn model (Johnson and Kotz 1977), where balls are numbered 1, 2, ...,M and placed into an
urn and then sequentially drawn out at random. The nth ball with number m being drawn out
correspond to the nth individual moving to place Pm. As utility positively correlates with place
occupancy, an extra ball with the same number is placed back into the urn alongside the original
ball. This is represented by the following utility function

Um “ Bam ` Ym, (16)

where B P p0,8q corresponds to the initial number of balls in the urn, and am is the apriori
probability distribution. The scaling parameter B moderates the dependency social aggregation
has on population density. Bam represents the initial number of balls in the urn corresponding
to place Pm. Note that as we are simply selecting the place following a probability distribution
rather than actually picking out balls, there is no requirement for this number to be integer-
valued.

3.3 The wheel and base model

Whereas in the previous sections, an underlying movement mechanism had sequentially allocated
individuals onto the places, the wheel and base model assumes a simultaneous allocation of all
individuals partaking in the movement process. We suppose a base disc of perimeter 1 is divided
into M place P1, ..., PM in the shape of wedges where Pm has perimeter length am (see figure
2(a)) such that

ř

m am “ 1. On top of the base disc, is an upper disc, the wheel representing
the N individuals in the form of N spikes; see Figure (2b). The angle between individuals Ii
and Ij is given by 2πθij , where θij P r´1{2, 1{2s can possibly be determined via a probability
distribution. Note that θij “ ´θji. When the angles between the spikes have been set, the wheel
is spun and rotates by an angle of θ selected uniformly at random. Then, individual Ii moves
to place Pm if and only if the corresponding spike lands above the corresponding segment; see
Figure (2c).
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Figure 3: (a) M “ 3 places with a1 “ 1
3 , a2 “ 1

6 , a3 “ 1
2 . (b) represents the N “ 3 individuals as spikes.

The angle between individuals Ii and Ij is given by 2πθij . In this case, θ12 “ 1
4 “ ´θ21. (c) shows the

simultaneous placement of all individuals after the upper disc is spun on top of the base. In this case,
individuals I1, I2, I3 move to places P3, P1, P3 respectively.

4 Theoretical results

In this section, we consider our theoretical results. Initially, we describe a generalised movement
method that ensures we can achieve our apriori target for h ‰ 1. We then consider explicit
fixation probability formulae for specific cases.

4.1 A generalised movement modelling approach

Our analysis aims to extend the existing territorial raider model to include other types of move-
ment distributions whilst ensuring the other constituent parts of the model remain the same,
that is, the population structure, the games played, and the evolutionary dynamics. By con-
sidering the home fidelity parameter and the number of connections an individual has on a
complete graph, we can develop a general procedure that allows us to embed any of the con-
sidered row-dependent movement models into the evolutionary setting of the territorial raider
model on complete networks. In the following, we describe a method of combining a movement
process of the type described in section 3 (which we refer to as following the process) with a
simple additional process to achieve our apriori targets.

The procedure involves deriving a probability distribution that accounts for the various move-
ment choices available to individuals within the population. This includes both those who follow
the process and those who do not, with the available actions for the latter group depending on
the value of h. Specifically, if h ą 1, this indicates a preference for remaining at home; h “ 1
represents an indifference between an individual’s home vertex and their neighbouring vertices;
and h ă 1 shows a preference for moving elsewhere. We incorporated these scenarios within the
probability distribution.
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Consider a complete graph where there are M places.

• If h ą 1, then an individual can either partake in the process and move via the movement
mechanism with probability M

h`M´1 or they do not move and stay at their home vertex

with probability h´1
h`M´1 .

• If h “ 1, then every member of the population plays the process.

• If h ă 1, then an individual can either move via the process with probability Mh
h`M´1 or

they move to a random non-home place with probability pM´1qp1´hq

h`M´1 .

Incorporating this probability distribution into the model ensures that all individuals within the
population achieve the target distribution. We show how this distribution explicitly satisfies
the apriori targets. If h ą 1, the probability of an individual occupying their home vertex is

h´1
h`M´1 ` 1

M p M
h`M´1q “ h

h`M´1 and the probability of an individual being elsewhere is M
h`M´1 ´

1
M p M

h`M´1q “ M´1
h`M´1 . If h ă 1, the probability of an individual occupying their home vertex

is 1
M p Mh

h`M´1q “ h
h`M´1 and the probability of an individual being elsewhere is pM´1qp1´hq

h`M´1 `

p Mh
h`M´1 ´ 1

M
Mh

h`M´1q “ M´1
h`M´1 .

As opposed to the wheel which simultaneously allocates all individuals participating in the
movement process, ensuring the apriori targets are hit, sequential movement processes such as
the polya-urn involve individuals moving later on in the process being influenced by preceding
individuals. Assuming all individuals have the same distribution, it was proven that polya-
urn process achieves the apriori targets (Broom et al. 2020), therefore this property naturally
extends to our movement modelling approach. It is important to note that individuals who
move via the movement mechanism are not influenced by the presence of individuals who did
not move via the mechanism. This condition was important to add to our approach as it ensures
the apriori targets are met. For example, an individual who moves via follow the majority, will
not follow those who did not partake in the movement process. They may end up in the same
place, but this will not be due to the movement mechanism process.

Regardless of the movement distribution chosen for the evolutionary model, we define a standard
practice to follow when computing the fitnesses of mutants and residents within a well-mixed
population, which can be characterised as follows: First, outline the distribution that describes
all conceivable ways in which members of a given population can move. For each specific
movement case, establish the distribution that defines all potential groupings that can emerge
as a result of the considered movement case. Then, average the payoffs from each case to obtain
the average payoffs. These average payoffs are used to compute the necessary evolutionary
metrics such as the fitnesses for deriving an analytical expression for the fixation probability.

As an example, we examined a well-mixed population of three individuals on a complete triangle
graph (see Figure 2c). Using the methodology developed in section 4.1, we calculated average
group distributions for each of the movement mechanisms. For h ą 1, we show an example of
the average group distribution for the follow the majority process (the polya-urn and the wheel
can be found in the appendix).
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• P(all together) “
27`9ph´1q

ph`2q3
,

• P(I1 I2 together, I3 alone) “ P(I1 I3 together, I2 alone) “ P(I2 I3 together, I1 alone)

“
2ph´1q2`6ph´1q

ph`2q3
,

• P(All individuals are alone) “
3ph´1q2`ph´1q3

ph`2q3
.

4.1.1 Fitness calculations

In our analysis, we evaluated the fitness of cooperators and defectors for any row-dependent
movement distribution by considering the following scenario: in an N -sized, well-mixed pop-
ulation consisting of k cooperators and N ´ k defectors, what proportion of reward V does a
specific cooperator, denoted as C1 receive on average?

First, we examined what fraction of V that C1 receives from another cooperator in the popula-
tion, denoted as C2. We considered all possible groupings in which C1 and C2 could be together.
We arbitrarily stated that the probability of C1 and C2 being together in a specific group with
S others is γS`2. Therefore, C1 receives precisely 1

S`1V from C2 which is then weighted by the
probability of the group forming, resulting in V

γS`2

S`1 . This quantity is then summed to consider

all possible group sizes i.e. V
N´2
ř

S“0

γS`2

S`1 . This expression represents the total probability of C1

and C2 being in the same group, which is also a measure of how likely they are to interact,

therefore, this was re-expressed as
N´2
ř

S“0

γS`2

S`1 “ dN . In other words, the total proportion of V

that C1 receives from C2 can be expressed as dNV .

FC “ R ´ C ` pk ´ 1qV dN and FD “ R ` kV dN . (17)

(17) expresses the fitness of a cooperator and defector for any movement mechanism described in
section 3, captured by the dN term. The value of dN , measures the likelihood of two individuals
being in the same group, thus influencing their chances of receiving rewards from each other.

A similar, more complex calculation for fitnesses in the Hawk-Dove game is provided in the
appendix, assuming only independent movement for simplicity. In an N -sized, well-mixed pop-
ulation with k doves and N ´ k hawks, the fitnesses for the dove and hawk are given by

R ` τph,N, kqV, (18)

where

τph,N, kq “

¨

˝

ˆ

h ` N ´ 2

h ` N ´ 1

˙N´k

´

˜

ph ` N ´ 2qN´1

ph ` N ´ 1qN

¸

ˆ

kpN ´ 1q ` pN ´ kqpN ´ 1q

k

˙

`
pN ´ kqpN ´ 1qph ` N ´ 2qN´k´1

kph ` N ´ 1qN´k

˛

‚,

and
R ` ωph,N, kqV ´ νph,N, kqC, (19)
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where

ωph,N, kq “

ˆ

1 `
k

N ´ k
´

pN ´ 1qph ` N ´ 2qN´k´1

ph ` N ´ 1qN´k
´

kph ` N ´ 2qN´k

pN ´ kqph ` N ´ 1qN´k

˙

,

νph,N, kq “

˜

k ´ N ` 1

h ` N ´ 1
´

k

N ´ k
`

hpN ´ k ´ 1q ` pN ´ k ´ 1qpN ´ 1q

ph ` N ´ 1q2
`

kph ` N ´ 2qN´k

pN ´ kqph ` N ´ 1qN´k
`

pN ´ 1qph ` N ´ 2qN´k´1

ph ` N ´ 1qN´k

¸

.

(18) and (19) are the dove’s and hawk’s fitness respectively and the calculations for these can
be found in the appendix given by (41) and (42).

4.2 General fixation probability formulae

In this section, we consider only well-mixed populations, equivalent to a complete graph with
N “ M on a territorial raider model. The fixation probability of a mutant (M) in an N -sized,
well-mixed population can be expressed by the standard formula (Karlin and Taylor 1975).

ρM1 “
1

1 `
řN´1

j“1

śj
k“1

δk
βk

. (20)

Here βK and δK are the respective birth and death rates of the mutant, the ratio of which
we show to be equivalent to the fitnesses of the mutant and resident respectively under BDB
dynamics. The birth rate of a mutant corresponds to an offspring of the mutant replacing
a resident member of the population and vice-versa for the death rate. This mathematically
translates to the following equation where there are k mutants (M) and N ´ k residents (R).

δk
βk

“
P(a resident replaces a mutant)

P(a mutant replaces a resident)
(21)

“

FRpdkpN´kqq

kFM`pN´kqFR

FMpdkpN´kqq

kFM`pN´kqFR

(22)

“
FR
FM

. (23)

(20) now becomes

ρM1 “
1

1 `
řN´1

j“1

śj
k“1

FR
FM

. (24)

This result means that under a complete graph and BDB dynamics, for any particular game, we
need only substitute the average fitnesses of the mutant and resident to determine the fixation
probability. Using a similar approach, if there are k individuals in the set of mutants K, and
N ´ k in the set of residents L the corresponding ratio of the death and birth rates under BDD
is

12



δk
βk

“
P(a resident replaces a mutant)

P(a mutant replaces a resident)

“

ˆ

1
N
wijF

´1
M pkpN´kqq

ř

zPK
wizF

´1
M `

ř

zPL
wizF

´1
R

˙

ˆ

1
N
wjiF

´1
R pkpN´kqq

ř

zPK
wjzF

´1
M `

ř

zPL
wjzF

´1
R

˙

“

ˆ

N ´ k ` pk ` w˚q
FR
FM

˙

ˆ

k ` pN ´ k ` w˚q
FM
FR

˙ ,

where w “ wij “ wji, ws “ wii “ wjj and w˚ “ ws´w
w .

Therefore, under BDD dynamics, the fixation probability of a single mutant (20) is expressed as

ρM1 “
1

1 `
řN´1

j“1

śj
k“1

pN´k`pk`w˚q
FR
FM

q

pk`pN´k`w˚q
FM
FR

q

. (25)

With the fitnesses calculated, we can directly substitute them into the fixation probability of
a mutant on a complete N -sized network under BDB dynamics (24) and BDD dynamics (25).
By substituting (17) and (18) into (24) respectively, we have that the fixation probability of a
mutant cooperator and dove under BDB dynamics are respectively given by

ρA1 “
1

1 `
řN´1

j“1

śj
k“1

R`kV dN
R´C`pk´1qV dN

, (26)

ρB1 “
1

1 `
řN´1

j“1

śj
k“1

R`ωV ´νC
R`τV

. (27)

Similarly, by substituting (17) and (18) into (25), the fixation probability of a mutant cooperator
and dove, under BDD dynamics are respectively given by

ρA1 “
1

1 `
řN´1

j“1

śj
k“1

pN´k`pk`w˚q
R`kV dN

R´C`pk´1qV dN
q

pk`pN´k`w˚q
R´C`pk´1qV dN

R`kV dN
q

, (28)

ρB1 “
1

1 `
řN´1

j“1

śj
k“1

pN´k`pk`w˚qR`ωV ´νC
R`τV

q

pk`pN´k`w˚q R`τV
R`ωV ´νC

q

. (29)
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4.3 Weak selection

The concept of selection intensity to consider situations in which the game exerts a minor
influence on the evolutionary process was considered and the rule of 1{3 was established (Taylor
et al. 2004) and states that selection favours type A fixating if the internal equilibrium point is
less than 1{3. This general rule was considered for the Hawk-Dove game and it was found that if
V
C ą 2

3 , then selection favours the fixation of the dove. It is worth noting that this analysis only
considered pairwise contests between individuals therefore, we have extended this analysis to
encompass the multiplayer Hawk-Dove game from our model, allowing us to explore the effects
multiplayer interactions have on the evolution of cooperation. We considered the effect weak
selection has on the fixation formulae in section 4.2 by assuming R is very large compared to V
and C i.e. the game has little influence in the evolutionary process.

4.3.1 The Public Goods game

We first considered the cooperator’s fixation probability under BDB. Consider the expression
inside the product term of (26).

R ` kV dN
R ´ C ` pk ´ 1qV dN

≊ 1 `
V dN ` C

R
, (30)

so (26) now becomes

1

1 `
N´1
ř

j“1
p1 `

V dN`C
R qj

. (31)

The term inside the summation can be approximated by the following,

ˆ

1 `
V dN ` C

R

˙j

≊ 1 ` j

ˆ

V dN ` C

R

˙

. (32)

Therefore, (31) becomes
1

1 `
N´1
ř

j“1
p1 ` jp

V dN`C
R qq

, (33)

which simplifies to

1

N ` p
V dN`C

R q
N´1
ř

j“1
pjq

“
1

N

ˆ

1

1 ` N´1
2R pV dN ` Cq

˙

≊
1

N

ˆ

1 ´
N ´ 1

2R
pV dN ` Cq

˙

. (34)
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From (34), as the parameter dN increases, the situation becomes increasingly unfavourable for
the mutant cooperator due to the defector’s advantageous position. The defector can receive an
additional reward without incurring any cost because, from their perspective, there is an extra
cooperator within the population from whom they will receive this benefit. Conversely, the
cooperator does not have this advantage as they receive no share from their own contributions.
With the growing value of dN , the likelihood of the mutant cooperator interacting with defectors
rises, further reinforcing the defector’s advantageous position.

We also considered the cooperator’s fixation probability under BDD dynamics. By applying
similar weak selection methods to (28), we have

1

N

ˆ

1 ´
pN ` 2w˚qpN ´ 1q

2RpN ` w˚q
pV dN ` Cq

˙

. (35)

(35) is an approximation of the fixation probability of the mutant cooperator under BDD dy-
namics.

4.3.2 The Hawk-Dove game

We carried out a similar, more complicated calculation for considering the dove’s fixation prob-
ability which can be found in the appendix. Using the dove’s fixation probability (27), a cal-
culation was done to determine the dove’s neutrality condition by setting the dove’s fixation
probability to equal 1

N i.e. ρB1 “ 1
N .

V “
p12 ´ 1

e q

p1e pγ ´ 1 ´ fphqq ` 1q
C, (36)

where fphq “ HrN ´ 1,

ˆ

h`N´1
h`N´2

˙k

s ´ lnpN ´ 1q and HrN ´ 1, as “
N´1
ř

k“1

ak

k

For varying h, the neutrality condition is approximately given by C “ 1.11V which means that
under our models, hawks are generally worse off compared to doves as the cost does not need
to be raised as significantly in the classical models for hawks and doves to be doing equally
well. This intuitively makes sense as larger groups are generally bad for hawks who are more
likely to encounter competition and, therefore, incur a greater cost due to a larger presence of
other hawks in their game interactions. We also applied weak selection methods to the dove’s
fixation probability under BDD dynamics which can be found in the appendix. We saw that
the dynamics do not affect the dove’s neutrality condition.

The BDD approximations for the fixation probabilities of the cooperator (35) and dove (63)
have a similar form to their respective BDB approximations (34), (51). If w˚ “ 0, then the
approximations are equal. In other words, if the self-weights are equal to all other weights,
then under weak selection, the fixation probability of a mutant cooperator or dove is the same
regardless of whether selection acts on the first or second event. Other dynamics were considered
and their functionality was explained in Pattni et al. (2017), such as the DBD dynamics where
death acts first and selection acts on this event. It was found that the results of DBD and BDB
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were identical. If the self-weights are the same as all other weights, then implementing DBD is
equivalent to BDD; therefore, BDD is the same as BDB.

A general condition for the fixation probability of a type A mutant in a type B population is
greater than the fixation probability of a type B mutant in a type A population was established
in Tarnita et al. (2009) given by

σa ` b ą c ` σd. (37)

where σ is the structure coefficient of the process. The value of σ depends on both the graph
and the updating rule, but not on the values a, b, c and d (which are the payoffs to the pairwise
matrix game) for example. For regular graphs with degree k and N " k, we have σ “ k`1

k´1 .
Using this analysis for the pairwise Hawk-Dove game, it was shown that in an infinite, well-
mixed population pk Ñ 8q, hawks and doves do equally well when V “ 2C. We also extended
this analysis to our models under the assumption of an infinite, well-mixed population, where
hawks and doves interact with one another in arbitrary group sizes rather than limiting pairwise
interactions.

By considering the fitness of a dove and hawk in an infinite, well-mixed population with a pro-
portion of p doves, we were able to extend the analysis from Tarnita et al. (2009) by introducing
a multiplayer Hawk-Dove game. By using the substitution p “ k

N , and then assuming N Ñ 8,
the fitnesses of a dove (18) and hawk (19) are respectively given by

R `

ˆ

ep ´ 1

ep

˙

V, (38)

R `

ˆ

1 ´ ep´1

1 ´ p

˙

V ´

ˆ

ep´1 ´ p

1 ´ p

˙

C. (39)

By equating these two fitnesses together and solving for V
C , we have

V

C
“

eppep´1 ´ pq

p1 ´ ep´1qpepq ´ pep ´ 1qp1 ´ pq
. (40)

For each value of p, (40) provides the corresponding equilibrium ratio of V
C . Our point of interest

is at p “ 1
2 where both doves and hawks are doing equally well. This equilibrium condition is

given by V
C “ 0.688 i.e. C “ 1.453V which supports our previous neutrality condition for a dove

(36), that in a multiplayer game context, hawks are generally doing worse than in the traditional
pairwise game analysis.
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5 Numerical results

For considering higher populations on larger graphs, we carried out computational methods to
simulate such processes as analytically carrying them out would be impractical. The computa-
tional methods are the same as the ones carried out in Schimit et al. (2019) except here, the
simulations are carried out on much simpler, complete networks, and individuals move via our
approach developed in section 4.1.

One simulation is defined as follows:

• The chosen complete network is formed using the iGraph library (Csardi and Nepusz 2006).

• The mutant is randomly placed on one of the nodes.

• Every individual probabilistically moves (or not) from their home vertex according to the
parameters of the model. Groups are formed and multiplayer games are played where
R “ 10, C “ 1 and V “ 2 for both of the considered games.

• Individuals return to their home patches.

• Each individual moves (or not) and groups are formed. Here, no games are played, instead,
the dynamic process occurs. One individual is selected to reproduce an offspring that will
replace another random member of the group (or its parent if the parent is alone). Selection
either acts on the birth or death even according to the chosen dynamics.

• The simulation terminates once the population is entirely composed of a single type of
individual.

• This process is averaged over 1, 000, 000 runs to minimise statistical variability.

As discussed in section 2.3, the assumptions in this section are slightly different to section
??. In the simulations, a single step is used in the contests and in the dynamic process i.e.
individuals only move once. The theoretical section assumes average weights corresponding to
where individuals move many times to accrue average fitnesses and weights.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4: The fixation probability of a mutant cooperator in a population of defectors on complete
decagon and pentadecagon graphs under BDB and BDD dynamics for varying h under distinct polya-urn
movement processes, For (a), (c), (e) and (g), we set B “ 0 (follow the majority), B “ 2, B “ 6 and
B “ 10,000 (a sufficiently large value to mirror independent movement). For (b), (d), (f) and (h) we set
h “ 0.5, h “ 1, and h “ 10 and vary B.



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5: The fixation probability of a mutant dove in a population of hawks on complete decagon and
pentadecagon graphs under BDB and BDD dynamics for varying h under distinct polya-urn movement
processes, For (a), (c), (e) and (g), we set B “ 0 (follow the majority), B “ 2, B “ 6 and B “ 10,000 (a
sufficiently large value to mirror independent movement). For (b), (d), (f) and (h) we set h “ 0.5, h “ 1
and h “ 10 and vary B.



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6: The fixation probability of a mutant cooperator in a population of defectors on complete
decagon and pentadecagon graphs under BDB and BDD dynamics for varying h under distinct wheel
movement processes, For (a), (c), (e) and (g), we set θ “ 0 (follow the majority), θ “ 2π

N (represents a
near complete dispersal process), θ “ π

N . For (b), (d), (f) and (h) we set h “ 0.5, h “ 1 and h “ 10 and
vary θ.



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7: The fixation probability of a mutant dove in a population of hawks on complete decagon
and pentadecagon graphs under BDB and BDD dynamics for varying h under distinct wheel movement
processes, For (a), (c), (e) and (g), we set θ “ 0 (follow the majority), θ “ 2π

N (represents a near complete
dispersal process), θ “ π

N . For (b), (d), (f) and (h) we set h “ 0.5, h “ 1, and h “ 10 and vary θ.



Figure 4 illustrates the fixation probability of a mutant cooperator under polya-urn processes
for BDB and BDD dynamics on complete decagon and pentadecagon graphs. As h approaches
0.1, the fixation probability remains constant, attributed to individuals randomly moving to
non-home places.

The cooperator’s fixation probability reaches its lowest point when h “ 1 where all members of
the population must participate in the movement process, leading to the formation of groups of
varying sizes (depending on the type of movement governing the process). This is disadvanta-
geous for cooperators as they are more likely to encounter defectors. The ”follow the majority”
process is the worst type of movement for cooperators as it ensures all individuals partaking in
the movement process, herd together at the same place; therefore, ensuring that defectors re-
ceive rewards from cooperators. As h tends to larger values, regardless of the movement process,
the cooperator’s fixation probability gradually increases because individuals are more likely to
remain on their own therefore, cooperators are highly unlikely to interact with defectors, thus
increasing their relative fitness.

Figure 4 also shows plots of the fixation probability of the cooperator against B (scaled to
B

B`1). As B increases, the cooperator’s fixation probability increases. This is attributed to the
gradual shift in the movement mechanism from a deterministic type (B “ 0), where individuals
simply move to the place containing the largest number of individuals, to an independent type
(B Ñ 8) where individuals move randomly, without influence from other individuals. As B
increases, individuals are less likely to herd together therefore the relative difference in the
average cooperator’s and defector’s fitness gradually decreases, thus increasing the cooperator’s
fixation probability.

The cooperator’s fixation probability is higher under BDD dynamics because selection affects
the second event. During the birth event, the probability of the cooperator reproducing is simply
1
N (5) as opposed to the less favourable BDB dynamics where the probability is proportional to
the cooperator’s fitness (3). For large h, the fixation probability tends to 1

N shown in figures
4peq and 4pgq. Here, individuals are mostly alone or occasionally with another individual. If an
alone individual is randomly selected to reproduce, then its offspring will replace them. Suppose
an individual within a pair is randomly selected to reproduce. In that case, the other individual
within the pair is guaranteed to be replaced, thus rendering the influence of selection within the
replacement process irrelevant.

Furthermore, Figure 4 shows that row-dependent movement has a more prominent effect on
the cooperator’s fixation probability when selection acts on the second event. In figures 4peq ´

4phq, there is a greater disparity in the fixation probabilities between the different movement
processes compared to figures 4paq ´4pdq where there is a smaller effect. Under BDD dynamics,
even though cooperators are more likely to reproduce, they are also more likely to be replaced
(depending on the movement mechanism governing the process). For instance, if individuals are
moving via follow the majority and h “ 1, then all individuals herd together and cooperators
are more likely to be replaced because of selection acting on the replacement event (6). Whereas
under BDB dynamics, all individuals within the group are equally likely to be replaced.

22



Figure 5 portrays the fixation probability of a mutant dove under distinct polya-urn processes
for BDB and BDD dynamics on the complete decagon and pentadecagon. In these figures, as h
approaches one, the dove’s fixation probability increases and reaches its maximum when h “ 1.

As all members of the population partake in the movement process when h “ 1, hawks are more
likely to interact with one another, incurring greater costs, thus reducing their relative fitness.
Therefore, in this game, follow the majority is the most beneficial movement process for doves
because this process forces all hawks partaking in the movement process to interact with each
other. As h increases, the dove’s fixation probability decreases because hawks are more likely
to stay on their home vertices and, therefore, less likely to interact with each other, increasing
their relative fitness. As h becomes infinitely large, the dove’s fixation probability tends to 1

N
regardless of the dynamics. Hawks and doves will have the same fitness if they are always alone
therefore, selection does not affect the process. Also, Figure 5 shows that as B increases, the
dove’s fixation probability falls. This occurs because as B increases, hawks are no longer forced
to group, thus their relative fitness gradually increases alongside B.

Furthermore, if selection acts on the second event, independent movement is no longer the worst
type of movement for doves. Instead, a polya-urn process (close to independent movement) is
the worst type of movement as shown in figures 5pfq and 5phq, where the value of B

B`1 reaches
its lowest point slightly below 1 but begins to increase after. This occurs due to the combined
effects of the game and dynamics but this effect is largely insignificant.

Figure 6 shows the fixation probability of a mutant cooperator under the wheel process for
both BDB and BDD dynamics on the complete decagon and pentadecagon. The chosen values
of theta remain consistent for each graph. θ “ 0 represents the follow the majority process,
while θ “ 2π

N signifies a near complete dispersal process where all individuals are separated.
Note that in our simulations, theta is rounded to three decimal places to allow for a minimal
degree of pairwise interaction between individuals under this angle. Without this adjustment,
the simulation would fail to complete as individuals would only replace themselves if they were
always separated, thus the evolutionary process would never reach extinction or fixation. θ “ π

N
corresponds to an intermediary angle between complete herding and separation.

The trends depicted in Figure 6 resemble those observed in the polya-urn in Figure 4, particularly
concerning the influences of herding, dynamics, and the level of h have on the cooperator’s
fixation probability. However, the key finding from these figures is that θ “ 2π

N , provides the
maximum fixation probability for the mutant cooperator for all h. When h “ 1 and θ “ 2π

N ,
all individuals are nearly always alone. This leads to an increase in the cooperator’s relative
fitness, as they rarely provide any rewards to defectors. Consequently, the fixation probability
rises significantly at this point. Figures 6peq and 6pgq show that when θ “ 2π

N or θ “ π
N and

h “ 1, the fixation probability is 1
N because individuals are either alone or in a pair rendering

selection insignificant as fitness is negligible in these cases due to selection acting on the second
event.
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Figure 7 depicts the fixation probability of a mutant dove under the wheel process for both BDB
and BDD dynamics on the complete decagon and pentadecagon.

Figures 7paq, 7pbq, 7pcq and 7pdq show that when h “ 1 and θ “ 2π
N , the dove’s fixation probability

is 1
N despite selection acting on the first event. This occurs as nearly every member of the

population is separated, therefore individuals do not compete with each other over resources.
Therefore, both hawks and doves have the same fitness rendering selection insignificant. When
h “ 1 and θ “ π

N , the fixation probability is at its lowest. Under this angle, there are at
most pairwise groups which is beneficial for hawks who incur very small costs from the game
interactions.

Also, Figure 7 shows that follow the majority pθ “ 0q gives a fixation probability greater than
1
N . As there is a large native hawk population, they herd together leading to them incurring
significant costs, greatly reducing their relative fitness, therefore, increasing the dove’s fixation
probability. In the Hawk-Dove Game, it is clear that herding favours the evolution of cooperation
more than dispersal.

Below, we show a table summarising how the different movement processes generally affect the
mutant cooperator’s and dove’s fixation probability (FP).

Cooperator’s FP Dove’s FP

Follow the majority pB “ 0q Minimum Maximum
Polya-Urn (increasing B) Increases Decreases

Random movement (B Ñ 8) Increases Minimum
The wheel (separation angle) Maximum Increases

Table 1: Fixation probabilities (FP) of cooperators and doves under different movement processes: follow
the majority (B “ 0), polya-urn (increasing B), random movement (B Ñ 8), and the wheel (separation
angle).

6 Discussion

In this paper, we have developed the framework from Broom and Rychtar (2012), by considering
the evolution of structured populations on complete networks involving multiplayer interactions
where individuals move in a coordinated manner (row-dependent movement). Specifically, we
have extended the territorial raider model developed by Broom et al. (2015) as we have devised a
methodology to model an evolutionary process where individuals move in a coordinated manner
described by the movement mechanisms developed by Broom et al. (2020). In previous models,
(Broom et al. 2015; Schimit et al. 2022) individuals moved independently irrespective of how
other individuals moved. Other models (Pattni et al. 2018; Erovenko et al. 2019; Pires et al.
2023; Erovenko et al. 2024) involved the development of a Markov movement model, where the
movement of individuals depends upon the population’s history. Hence, the model in this paper
provides a different perspective on the movement of individuals. In particular, we explored the
relation between row-dependent movement and the evolution of cooperation.
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The main objective of this paper was to embed realistic coordinated movement systems into a
complete evolutionary setting and use different social dilemma games to illustrate this as this
has previously not been considered in modelling the evolution of structured populations. In
Krieger et al. (2017) the effects of an abstract type of motion on the evolution of cooperation in
structured populations were explored. In the context of evolutionary graph theory, individuals
swap or shuffle vertices on the graph structure, independent of the reproductive events. They
demonstrated that the presence of motion can amplify or suppress selection depending on the
graph structure. For instance, motion suppresses selection on the cycle graph. However, it
was also shown that this type of motion did not change the population’s configuration on the
complete graph and, therefore, has no effects on the evolutionary dynamics. This, however,
differs from our results in this paper focused on complete graphs as we have illustrated the
several effects the movement mechanisms have on the evolution of cooperation. However, the
work done in our paper is largely different as individuals move more realistically and can form
multiplayer groups.

In the context of the Public Goods Game, we demonstrated that herding hinders the evolution
of cooperation as aggregation provides defectors with opportunities to exploit cooperators in
their contest interactions. Dispersal, however, increases the likelihood of cooperative behaviour
evolving as defectors are less likely to be in groups containing cooperators and, therefore, cannot
receive a benefit from their presence. Ohtsuki et al. (2006) showed that, in general, birth-death
processes do not favour the evolution of cooperation. Consequently, in the public goods game,
the cooperator’s fixation probability is always under 1{N , even with the implementation of the
movement mechanisms. However, in the Hawk-Dove Game, aggregation benefits the evolution
of cooperation. In Broom et al. (2015), it was shown that the dove’s fixation probability can
occasionally exceed 1{N if the reward is adjusted. However, the results in this paper show
that even if the reward remains constant, the movement distributions, particularly follow the
majority, have a stronger effect in increasing the dove’s fixation probability above 1{N as hawks
are forced to herd together. This forces hawks to interact with one another, incurring a greater
cost, thus decreasing their relative fitness. While dispersal also benefits doves, herding has a
stronger effect.

Moreover, we derived analytical expressions for the fixation probabilities of the cooperator and
dove in both BDB and BDD dynamics. By applying weak selection methods, we extended pre-
vious analyses (Tarnita et al. 2017; Taylor et al. 2004) by producing neutrality and equilibrium
conditions for the Hawk-Dove game. These conditions align with our expectations, indicating
that, in the models developed in this paper, hawks generally perform worse than in the tradi-
tional evolutionary graph theory models. The work in this paper accounts for a more realistic
multiplayer game scenario compared to the limiting pairwise case. Notably, larger group sizes
negatively impact the hawk’s fixation probability as expected.

There are several directions for future work. Broom et al. (2015) explored other evolutionary
measures such as mean group size and temperature and their impact on fixation probability. Our
primary focus was to develop a methodology to explore the relationship between row-dependent
movement and fixation probabilities. We intend to investigate these evolutionary measures and
their relationship with the movement mechanisms under our models in future work. Another
potential direction involves extending the methodology developed in this paper to the generalised
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territorial raider model established by (Pattni et al. 2017). This extension would allow for the
consideration of evolutionary processes where individuals reside within subpopulations and move
according to the movement distributions described in this paper. We also intend to consider non-
complete graph structures, representing non-well-mixed populations, where individuals will have
different apriori distributions. Incorporating such graph structures into the evolutionary process
raises the question of whether our developed methodology in this paper will naturally extend to
the non-well-mixed case accommodating the various, distinct apriori distributions. Alternatively,
it may be the case that a new approach will need to be developed. Furthermore, the movement
mechanisms could also be adjusted to instead allow for biased movement dependent upon the
strategies present at each of the patches. For example, the follow the majority process could
be amended to state that individuals move to the patch that contains the largest number of
cooperators. A much more complex avenue involves the simultaneous implementation of both
row-dependent movement and history-dependent movement within the evolutionary process. In
the Markov models (Pattni et al. 2018), individuals prefer to remain at places that benefit their
fitness, characterised by parameters measuring an individual’s preference for staying in a specific
group, such as the staying propensity and a group’s attractiveness. We aim to investigate how
these parameters will need to be modified to also accommodate row-dependent movement.
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Appendix

Average group distribution on complete triangle graph

Using the methodology defined in section 4.1, we showed how to calculate the average group
distribution by considering a well-mixed population of three individuals I1, I2, and I3 on a
complete triangle graph under the follow the majority, Polya-urn, and wheel processes.

The average group distribution for the follow the majority process is

• P(all individuals are together) “
9ph´1q

ph`2q3
` 27

ph`2q3
“

27`9ph´1q

ph`2q3
,

• P(I1 and I2 are together while I3 is alone) “
2ph´1q2

ph`2q3
`

6ph´1q

ph`2q3
“

2ph´1q2`6ph´1q

ph`2q3
,

• P(I1 and I3 are together while I2 is alone) “
2ph´1q2

ph`2q3
`

6ph´1q

ph`2q3
“

2ph´1q2`6ph´1q

ph`2q3
,

• P(I2 and I3 are together while I1 is alone) “
2ph´1q2

ph`2q3
`

6ph´1q

ph`2q3
“

2ph´1q2`6ph´1q

ph`2q3
,

• P(all individuals are alone) “
3ph´1q2

ph`2q3
`

ph´1q3

ph`2q3
“

3ph´1q2`ph´1q3

ph`2q3
.

The average group distribution under a general polya-urn process is given by

• P(all individuals are together) “
3ph´1qpB`3qpB`2q`3pB`3qpB`6q

ph`2q
3

pB`1qpB`2q
,

• P(I1 and I2 are together while I3 is alone) “
2ph´1q

2
pB`1qpB`2q`6ph´1qpB`3qpB`6q`3pB`3qp2Bq

ph`2q
3

pB`1qpB`2q
,

• P(I1 and I3 are together while I2 is alone) “
2ph´1q

2
pB`1qpB`2q`6ph´1qpB`3qpB`6q`3pB`3qp2Bq

ph`2q
3

pB`1qpB`2q
,

• P(I2 and I3 are together while I1 is alone) “
2ph´1q

2
pB`1qpB`2q`6ph´1qpB`3qpB`6q`3pB`3qp2Bq

ph`2q
3

pB`1qpB`2q
,

• P(all individuals are alone) “
3ph´1q

2
pB`1qpB`2q`3ph´1qp2BqpB`2q`3Bp2Bq`ph´1q

3
pB`1qpB`2q

ph`2q
3

pB`1qpB`2q
.
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For the wheel process, we considered an example where 0 ď θ ă π
3 ,

• P(All individuals are together) “
9hp1´ 2θ

π
q`18´ 63θ

π
ph`2q3

,

• P(I1 and I2 are together but not with I3) “
2ph´1q2`6ph´1q` 27θ

π
ph`2q3

• P(I1 and I3 are together but not with I2) “
2ph´1q2`6ph´1q` 27θ

π
ph`2q3

,

• P(I2 and I3 are together but not with I1) “
2ph´1q2`6ph´1q` 27θ

π
ph`2q3

,

• P(All individuals are separate) “
3ph´1q2`27ph´1qp 2θ

3π
q`ph´1q3

ph`2q3
.

The fitness of a dove and hawk

In the Hawk-Dove game, we opted to assume only independent movement to simplify the fitness
calculation. This simplification was necessary because the Hawk-Dove game exhibits greater
complexity in the payoffs to each strategy, which are contingent on group composition and,
therefore, the movement distribution. By focusing on solely independent movement for this
game, we were able to evaluate the fitness of hawks and doves within this framework more
effectively.

Consider a population of size N , well-mixed, and composed of k doves and N ´k hawks. A dove
will only receive a proportion of a reward V if it is present in a group that contains no hawks.
This can occur in four distinct scenarios. Consider two doves, D1, D2 and a hawk H1:

• D1 remains in its home, and a group of L doves forms on D1’s home patch.

• D1 moves to D2’s home patch, where D2 stays at home, and a group of L doves forms on
D2’s home patch.

• D1 moves to D2’s home patch, where an L-sized group of doves forms, but D2 leaves their
home and moves elsewhere.

• D1 moves to H1’s home patch, where an L-sized group of doves forms, but H1 leaves their
home and moves elsewhere.

To compute the average fitness of a dove, we weighted the reward that D1 receives in each of
these scenarios by the probability of each group forming. We consider the first scenario as an
example. The probability of D1 staying at home and an L-sized group of doves forming on D1’s
home patch is given by

βL “

ˆ

h

h ` N ´ 1

˙ˆ

1

h ` N ´ 1

˙L´1ˆ

k ´ 1

L ´ 1

˙ˆ

h ` N ´ 2

h ` N ´ 1

˙N´kˆ

h ` N ´ 2

h ` N ´ 1

˙k´L

.
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Note that the term
´

h`N´2
h`N´1

¯N´k
ensures the absence of hawks in the group, and

´

h`N´2
h`N´1

¯k´L

ensures that all other k ´ L doves are located elsewhere. We must then weight βL by the
number of doves in the group, as each dove receives an equal share of the reward, resulting in

βLp 1
LqV . This is summed over all possible group sizes to cover the entire range,

k
ř

L“1

βLp 1
LqV .

This expression can be simplified as follows

k
ÿ

L“1

βLp
1

L
q “

h

k

ˆˆ

h ` N ´ 2

h ` N ´ 1

˙N´k

´

ˆ

h ` N ´ 2

h ` N ´ 1

˙N˙

.

By employing similar methods for the other scenarios and combining these expressions, we derive
the average fitness of a dove as:

R `

¨

˝

ˆ

h ` N ´ 2

h ` N ´ 1

˙N´k

´

˜

ph ` N ´ 2qN´1

ph ` N ´ 1qN

¸

ˆ

kpN ´ 1q ` pN ´ kqpN ´ 1q

k

˙

`
pN ´ kqpN ´ 1qph ` N ´ 2qN´k´1

kph ` N ´ 1qN´k

˛

‚V,

which we re-express as

R ` τph,N, kqV, (41)

where

τph,N, kq “

¨

˝

ˆ

h ` N ´ 2

h ` N ´ 1

˙N´k

´

˜

ph ` N ´ 2qN´1

ph ` N ´ 1qN

¸

ˆ

kpN ´ 1q ` pN ´ kqpN ´ 1q

k

˙

`
pN ´ kqpN ´ 1qph ` N ´ 2qN´k´1

kph ` N ´ 1qN´k

˛

‚.

Similarly, to calculate the fitness of a hawk, we must consider all scenarios in which a hawk can
receive a share of the reward and possibly endure a cost. Hawks are indifferent to the presence
of doves within the group, as they will always flee from a hawk’s presence, leading to them
receiving no share of the reward. The portion of V that a hawk receives depends on whether
other hawks are present within the group. Consider two hawks, H1 and H2, along with a dove,
D1:

• H1 stays at home, and a group of L hawks forms on H1’s home patch.

• H1 moves to D1’s home patch, where a group of L hawks forms.

• H1 moves to H2’s home patch, where H2 stays home and a group of L hawks is formed.

• H1 moves to H2’s home patch, where a group of L hawks forms, but H2 has moved
elsewhere.

To calculate the average fitness of a hawk, we must weight the reward that H1 receives in each
of these scenarios by the probability of each group forming. Consider the first scenario as an
example. The probability of H1 staying at home and a group of L hawks forming on H1’s home
patch is given by
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αL “

ˆ

h

h ` N ´ 1

˙ˆ

1

h ` N ´ 1

˙L´1ˆ

N ´ k ´ 1

L ´ 1

˙ˆ

h ` N ´ 2

h ` N ´ 1

˙N´k´L

.

Note that the term
´

h`N´2
h`N´1

¯N´k´L
ensures that only L hawks are present on H1’s home patch,

with the remaining N ´ k ´ L hawks elsewhere. αL must be weighed by the number of hawks
in the group, resulting in αLp 1

LqV . However, the cost that the average hawk endures must be

weighed by
´

L´1
L

¯

C. This is then summed over all possible group sizes to cover the entire

range,
N´k
ř

L“1

αLp 1
LqV and

N´k
ř

L“1

αLpL´1
L qC. These expressions can be simplified as follows:

For the reward component:

N´k
ÿ

L“1

αLp
1

L
q “

h

N ´ k

ˆ

1 ´

ˆ

h ` N ´ 2

h ` N ´ 1

˙N´k˙

.

And for the cost component:

N´k
ÿ

L“1

αLp
L ´ 1

L
q “

h

h ` N ´ 1

ˆ

1 ´

ˆ

h ` N ´ 2

h ` N ´ 1

˙N´k´1˙

.

By using similar methods for the other scenarios and combining these expressions, we derive the
average fitness of a hawk as:

R `

ˆ

1 `
k

N ´ k
´

pN ´ 1qph ` N ´ 2qN´k´1

ph ` N ´ 1qN´k
´

kph ` N ´ 2qN´k

pN ´ kqph ` N ´ 1qN´k

˙

V

´

˜

k ´ N ` 1

h ` N ´ 1
´

k

N ´ k
`

hpN ´ k ´ 1q ` pN ´ k ´ 1qpN ´ 1q

ph ` N ´ 1q2
`

kph ` N ´ 2qN´k

pN ´ kqph ` N ´ 1qN´k
`

pN ´ 1qph ` N ´ 2qN´k´1

ph ` N ´ 1qN´k

¸

C,

which we re-express as

R ` ωph,N, kqV ´ νph,N, kqC. (42)

where

ωph,N, kq “

ˆ

1 `
k

N ´ k
´

pN ´ 1qph ` N ´ 2qN´k´1

ph ` N ´ 1qN´k
´

kph ` N ´ 2qN´k

pN ´ kqph ` N ´ 1qN´k

˙

,

νph,N, kq “

˜

k ´ N ` 1

h ` N ´ 1
´

k

N ´ k
`

hpN ´ k ´ 1q ` pN ´ k ´ 1qpN ´ 1q

ph ` N ´ 1q2
`

kph ` N ´ 2qN´k

pN ´ kqph ` N ´ 1qN´k
`

pN ´ 1qph ` N ´ 2qN´k´1

ph ` N ´ 1qN´k

¸

.
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Weak selection: dove’s fixation probability

The Dove’s fixation probability under BDB dynamics is given by

ρB1 “
1

1 `
řN´1

j“1

śj
k“1

R`ωV ´νC
R`τV

. (43)

We carried out weak selection methods on (43). Consider the expression inside the product term
of (43).

R ` ωV ´ νC

R ` τV
“

1 ` A
R

1 ` B
R

,

where

A “ ωV ´ νC, and B “ τV,

1 ` A
R

1 ` B
R

≊ 1 `
A ´ B

R
.

The term inside the product of (43) now becomes

j
ź

k“1

ˆ

1 ` A
R

1 ` B
R

˙

“

ˆ

1 `
Ap1q ´ Bp1q

R

˙ˆ

1 `
Ap2q ´ Bp2q

R

˙

...

ˆ

1 `
Apjq ´ Bpjq

R

˙

“ 1 `

j
ÿ

k“1

ˆ

Apkq ´ Bpkq

R

˙

. (44)

So from equation (43)

N´1
ÿ

j“1

j
ź

k“1

R ` ωV ´ νC

R ` τV
“

N´1
ÿ

j“1

ˆ

1 `

j
ÿ

k“1

ˆ

Apkq ´ Bpkq

R

˙˙

“ N ´ 1 `
1

R

N´1
ÿ

k“1

ˆ

ωV ´ νC ´ τV

˙ˆ

N ´ k

˙

,

which simplifies to

N ´ 1 `
1

R

ˆ N´1
ÿ

k“1

pωV qpN ´ kq ´

N´1
ÿ

k“1

pνCqpN ´ kq ´

N´1
ÿ

k“1

pτV qpN ´ kq

˙

. (45)

By substituting the fitnesses from (41) and (42) and simplifying, we have
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N´1
ÿ

k“1

pωV qpN ´ kq “

ˆ

NpN ´ 1 ´
x ´ xN

1 ´ x
q ` p

pN ´ 1qxN`1 ´ NxN ` x

px ´ 1q2
qp

h ´ 1

h ` N ´ 2
q

˙

V, (46)

N´1
ÿ

k“1

pνCqpN ´ kq “

ˆ

p
1 ´ h

h ` N ´ 2
qp

pN ´ 1qxN`1 ´ NxN ` x

px ´ 1q2
q ´

1

2
NpN ´ 1q ` Np

x ´ xN

1 ´ x
q

˙

C, (47)

N´1
ÿ

k“1

ˆ

τV

˙ˆ

N ´ k

˙

“ ´

ˆ

NpN ´ 1qph ` N ´ 2qN´1ph ` N ´ 1q´N

`
h ´ 1

h ` N ´ 2

ˆ

pN ´ 1qxN`1 ´ NxN ` x

px ´ 1q2

˙

`
NpN ´ 1q

h ` N ´ 2

ˆ

NxNHrN ´ 1,
1

xk
s ´

x ´ xN

1 ´ x

˙˙

, (48)

where

HrN ´ 1, as “

N´1
ÿ

k“1

ak

k
and x “

h ` N ´ 2

h ` N ´ 1
. (49)

By inserting (46), (47) and (48) into (45), we arrive at the following

N ´ 1 `
N

R

ˆˆ

pN ´ 1 ´
x ´ xN

1 ´ x
q ` pN ´ 1q

ˆ

ph ` N ´ 2qN´1

ph ` N ´ 1qN

˙

pNHrN ´ 1, 1s ` 1 ´ Nq

´
pN ´ 1q

h ` N ´ 2
pNxNHrN ´ 1,

1

xk
s ´

x ´ xN

1 ´ x
q

˙

V

´

ˆ

p
1 ´ h

h ` N ´ 2
qp

pN ´ 1qxN`1 ´ NxN ` x

Npx ´ 1q2
q ´

1

2
pN ´ 1q ` p

x ´ xN

1 ´ x
q

˙

C

˙

. (50)

Substituting (50) into (43) and simplifying, we have

1

N ` N
R

ˆ

pλ1 ` λ2 ´ λ3qV ´ pλ4qC

˙ ≊
1

N

ˆ

1 ´
1

R
ppλ1 ` λ2 ´ λ3qV ´ pλ4qCq

˙

, (51)

which is the approximation of the fixation probability of a mutant dove under BDB dynamics
where

λ1 “

ˆ

N ´ 1 ´
x ´ xN

1 ´ x

˙

, (52)

λ2 “ pN ´ 1q

ˆ

ph ` N ´ 2qN´1

ph ` N ´ 1qN

˙

pNHrN ´ 1, 1s ` 1 ´ Nq, (53)
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λ3 “
pN ´ 1q

h ` N ´ 2

ˆ

NxNHrN ´ 1,
1

xk
s ´

x ´ xN

1 ´ x

˙

, (54)

λ4 “

ˆ

1 ´ h

h ` N ´ 2

˙ˆ

pN ´ 1qxN`1 ´ NxN ` x

Npx ´ 1q2

˙

´
1

2
pN ´ 1q `

ˆ

x ´ xN

1 ´ x

˙

. (55)

We assumed an infinite well-mixed population i.e. as N Ñ 8. We consider each λi for i P

t1, 2, 3, 4u and deduce an approximation for each λi as N tends to infinity.

For (52), we have,

λ1 ≊
N

e
. (56)

For (53), we have

λ2 ≊
ˆ

N ´ 1

e

˙ˆ

lnpN ´ 1q ` γ `
1

N
´ 1

˙

,

where γ is the Euler-Mascheroni constant.

For (54) we have,

λ3 ≊
N

e
lnpN ´ 1q `

N

e
fphq ´ N `

N

e
, (57)

where fphq “ HrN ´ 1,

ˆ

h`N´1
h`N´2

˙k

s ´ lnpN ´ 1q.

From (55) we have,

λ4 ≊ p1 ´ hqp1 ´
2

e
q ` Np

1

2
´

1

e
q `

1

2
. (58)

By simplifying (56), (57), and (57),

pλ1 ` λ2 ´ λ3qV “
N

e

ˆ

γ ´ 1 ´ fph,Nq

˙

`
1

e

ˆ

2 ´ lnpN ´ 1q ´ γ ´
1

N

˙

` N. (59)

Substituting (59) and (58) into (51), we have

1

N

ˆ

1 ´
1

R

ˆˆ

N

e

ˆ

γ ´ 1 ´ fph,Nq

˙

`
1

e

ˆ

2 ´ lnpN ´ 1q ´ γ ´
1

N

˙

` N

˙

V ´

ˆ

p1 ´ hqp1 ´
2

e
q ` Np

1

2
´

1

e
q `

1

2

˙

C

˙˙

, (60)

which is an approximation of the fixation probability of a mutant dove in an infinite, well-mixed
population. The neutrality condition for this case is given by ρB1 “ 1

N i.e.

N

e

ˆ

γ ´ 1 ´ fph,Nq

˙

`
1

e

ˆ

2 ´ lnpN ´ 1q ´ γ ´
1

N

˙

` N

˙

V ´

ˆ

p1 ´ hqp1 ´
2

e
q ` Np

1

2
´

1

e
q `

1

2

˙

C “ 0, (61)

which simplifies to

V “
p12 ´ 1

e q

p1e pγ ´ 1 ´ fphqq ` 1q
C. (62)
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By using similar methods to the dove’s fixation probability under BDD dynamics (29), we deduce
a similar weak selection approximation given by

1

N

ˆ

1 ´
pN ` 2w˚q

RpN ` w˚q
ppλ1 ` λ2 ´ λ3qV ´ pλ4qCq

˙

. (63)

where the neutrality condition remains unchanged.
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