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Abstract

Metastatic prostate cancer is initially treated with androgen deprivation therapy (ADT). However,
resistance typically develops in about 1 year – a clinical condition termed metastatic castrate-
resistant prostate cancer (mCRPC). We develop and investigate a spatial game (agent based
continuous space) of mCRPC that considers three distinct cancer cell types: 1) those dependent
on exogenous testosterone (T+), 2) those with increased CYP17A expression that produce testos-
terone and provide it to the environment as a public good (TP ), and 3) those independent of
testosterone (T−). The interactions within and between cancer cell types can be represented by
a 3 × 3 matrix. Based on the known biology of this cancer there are 22 potential matrices that
give roughly three major outcomes depending upon the absence (good prognosis), near absence
or high frequency (poor prognosis) of T− cells at the evolutionarily stable strategy (ESS). When
just two cell types coexist the spatial game faithfully reproduces the ESS of the corresponding
matrix game. With three cell types divergences occur, in some cases just two strategies coexist
in the spatial game even as a non-spatial matrix game supports all three. Discrepancies between
the spatial game and non-spatial ESS happen because different cell types become more or less
clumped in the spatial game – leading to non-random assortative interactions between cell types.
Three key spatial scales influence the distribution and abundance of cell types in the spatial game:
i. Increasing the radius at which cells interact with each other can lead to higher clumping of
each type, ii. Increasing the radius at which cells experience limits to population growth can
cause densely packed tumor clusters in space, iii. Increasing the dispersal radius of daughter cells
promotes increased mixing of cell types. To our knowledge the effects of these spatial scales on
eco-evolutionary dynamics have not been explored in cancer models. The fact that cancer inter-
actions are spatially explicit and that our spatial game of mCRPC provides in general different
outcomes than the non-spatial game might suggest that non-spatial models are insufficient for
capturing key elements of tumorigenesis.
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1. Introduction

In cancer biology, tumors are viewed as complex ecosystems consisting of cancer cells, normal
cells, blood vasculature, inter-cellular spaces, and various nutrients such as oxygen and glucose [?
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? ? ]. Within this ecosystem, cancer cells, often of distinct types, compete for space and nutrients,
and engage in direct interactions. Cancer cells both contribute towards and are affected by their5

neighborhoods (known as microenvironments) within which they consume available resources,
survive and proliferate [? ]. Within these neighborhoods there are eco-evolutionary feedbacks
where limiting resources influence the total abundance of cancer cells and interactions between
tumor cells influence the frequency of cell types. While often modeled non-spatially, several
features of tumors invite spatially-explicit models. For instance, biopsies, histological samples10

and MRI imaging all provide spatial information on tumor characteristics [? ? ]. Pathologists
often measure and score spatial distributions of cancer cell types, vasculature, immune cells, and
other tumor properties [? ? ]. Finally, increasingly cancer biologists recognize the ubiquity of
spatial heterogeneity within tumors [? ? ]. This heterogeneity likely has significance for tumor
progression, metastases and patient outcome [? ].15

Mathematical models of cancer have been employed to understand tumor initiation, progres-
sion and metastases [? ]. Such models can be used to fit existing data, evaluate key factors
relevant to cancer progression, or provide qualitative and quantitative predictions that can be
experimentally validated [? ? ]. Non-spatial models of cancer can be deterministic or stochastic.
They can take the form of ordinary differential equations that track the dynamics of the cancer20

cells (often seen as growing logistically or according to a Gompertz equation [? ]) and perhaps
that of normal cells and/or immune cells. Spatially explicit models may take the form of diffusion
processes framed as partial differential equations models [? ], or the models may be agent based [?
]. As agent based models, the cancer cells or other features of the tumor may be represented
on vertices of a lattice or network. Or, individual cells may occupy a space on a spatial grid25

described as squares or hexagons [? ? ]. Finally, agent based models can consider continuous
space where the cancer cells are represented by continuously varying spatial coordinates in one,
two or three dimensions [? ].

Mathematical models can consider the eco-evolutionary dynamics that occur in tumors. Here
we define a cancer cell “type” as cells that share the same heritable phenotype relevant to the30

cancer under study. Ecological dynamics represent changes in the population size or density of
cancer cells. The evolutionary dynamics consider how the heritable traits of cancer cell lineages
change with time, or how the frequencies of different cancer cell types change with time. When a
cancer cell’s survival or proliferation probabilities are influenced by its type and the types of other
cancer cells, the dynamics are frequency-dependent and therefore can be described using game35

theory. Evolutionary game theory (EGT) provides an excellent modeling tool for considering
complex tumors that include several interacting cancer cell types.

EGT deals with interactions between players [? ? ]. As a game, cancer cells represent the
players, their types or heritable phenotypes represent the different strategies, and survival and
proliferation rates represent the payoffs. A cell’s payoff will be influenced by its strategy and the40

strategies of others. EGT includes tools for modeling population dynamics and the evolutionary
dynamics of changes in the frequency of different cancer cell types. EGT can be used to find eco-
evolutionary equilibria and to evaluate their stability. When there are a finite number of different
possible strategies among the cancer cells, then the evolutionary dynamics can be modeled using
replicator dynamics (RD) [? ]. RD are non-spatial and apply when an individual interacts with45

the population at large either via random interactions or through “playing the (entire) field”.
Recent research has focused on extending RD into spatially explicit scenarios [? ? ? ]. Both the
evolutionary dynamics and subsequent equilibria may change when space is made explicit [? ? ?
? ? ].

Recently, cancer has been modeled using replicator dynamics. These models have either been50

non-spatial [? ? ? ] or spatially defined as occurring on a fixed lattice of a graph [? ]. Here
we use a spatially-explicit agent based approach to model cancer as an evolutionary game. First,
we describe metastatic castrate-resistant prostate cancer that provides the motivation for our
modeling work. The biology of this cancer suggests three important cancer cell types (strategies)
whose interactions and payoffs can be described with a 3 × 3 matrix game. We can analyze55

this matrix game as a non-spatial model using RD, and we develop a spatial version of the
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prostate cancer model where the space is continuous. Second, we find the evolutionarily stable
strategies (ESS) for the non-spatial game, and the stable equilibria that arise in the spatial
variant of the model. Finally, using the spatial model, we explore three relevant processes and
scale dependencies that must occur in actual tumors. To our knowledge these processes and their60

interactions have not been collectively explored in cancer models.
The first of these processes relates to the density-dependence radius. A given tumor cell

will be negatively affected by the density of other cancer cells within some neighborhood that
represents the local depletion of resources or buildup of toxins. The second process relates to the
frequency-dependence radius, that describes the distance at which cancer cells play the game.65

Up to what distance does the strategy of neighbors matter in terms of influencing the payoff
to an individual tumor cell? The third process relates to the dispersal radius. Cancer cells
exhibit motility and the resulting movement of cells determines the distance between two daughter
cells. Prior models have not made the distinction between the three scale dependent processes
of density-dependence, frequency-dependence, and dispersal radius. By considering continuous70

space, our model lends itself to examining the effects of these three scale-dependent processes
on the eco-evolutionary equilibrium and on the dispersion of cancer cells and strategies in space.
In what follows we introduce the metastatic castrate-resistant prostate cancer models used in
this paper (Section 2); we compare the eco-evolutionary outcomes of the non-spatial and spatial
models (Section 3); we examine the effects of varying the three scale-dependent processes on75

spatial equilibria (Sections 4); and we discuss our results and highlight some directions for future
research (Section 5).

2. Models: Replicator dynamics and its spatial variant

2.1. Background: Metastatic castrate-resistant prostate cancer

Prostate cancer most commonly metastasizes to the bone and several to a dozen or more80

secondary tumors can arise across bones of a single patient [? ? ]. Despite no longer residing
within the primary tumor of the prostate (in fact for many of these patients the prostate may
have been removed), these cancer cells still retain androgen receptors and rely on testosterone
produced by normal cells of the patient and distributed through the blood [? ]. We shall refer to
this cancer cell type as having strategy T+. To target these cancer cells’ need for testosterone,85

androgen deprivation therapy (ADT) stops normal production of testosterone in the patient – a
treatment termed “chemical castration” [? ? ? ]. Virtually all patients initially respond to ADT.
But, metastatic prostate cancer remains an almost uniformly fatal disease because the cancer
cells are able to evolve resistance. In ADT, resistance typically results in a few months or years
and the disease progresses to metastatic castrate-resistant prostate cancer (mCRPC). Resistance90

to ADT typically occurs through two different strategies. One of these involves the upregulation
of CYP17A whereby the cancer cell produces its own testosterone [? ? ]. These we shall refer
to as TP cells. They retain androgen receptors. The TP cells have the side effect of providing
testosterone to their external environment where it becomes available to T+ cells. Finally, re-
sistance to androgen deprivation can take the form of cancer cells becoming wholly independent95

of testosterone: T−. Treatment of mCRPC depends on the dominant resistance strategy. When
TP cells are that largest intratumoral population, abiraterone, a CYP17A inhibitor, is typically
effective. However, even in patients who respond to abiraterone, the disease progresses usually
within 1-2 years.

Here we investigate the eco-evolutionary dynamics of mCRPC by modeling the composition100

and dispersion patterns of the three cell types (T+, TP and T−) within a tumor. The resulting
eco-evolutionary equilibria become important in that a tumor with primarily T+ and TP cells
can be effectively treated with drugs such as abiraterone that target androgen receptors [? ].
However, tumors with high frequencies of T− cells will be unresponsive to abiraterone and require
chemotherapy.105

3



2.2. Model basics

Let T = {T+, TP , T−} be the set of cell types from Section 2.1. Let xi, i ∈ T, denote the
frequency of the cells of type i ∈ T in the population. We assume that the cancer cells interact
with each other as a game. When a focal cell of type i ∈ T interacts with a cell of type j ∈ T ,
the outcome is the probability that the focal cell divides and creates an offspring of type i. These110

division probabilities for interaction between all types form a payoff (fitness) matrix A depicted
in Table 1. Please consult Appendix A for details about the non-spatial model corresponding to
this payoff matrix.

T+ TP T−

T+ 0 a b
TP c 0 d
T− e f 0

Table 1: The fitness matrix for T+, TP and T− cell populations. The diagonal values have been set to 0.

2.3. Replicator dynamics in metastatic castrate-resistant prostate cancer

For each type i ∈ T, the replicator dynamics [? ] define the time change ẋi of its cell frequency
xi:

ẋi = xi(eiAx
> − xAx>), i ∈ T (1)

where x = (xT+ , xTP , xT−), and ei is the i-th row of a 3× 3 identity matrix. Even with the same115

initial conditions (x(0) = x0), the frequency dynamics (1) will vary with the payoff matrix A.
For the 22 cases, we can map the frequency trajectories and the evolutionary stable strategies
(ESSs) on a simplex (Figure 1). When starting from positive initial frequencies, i.e., x(0) =
(1/3, 1/3, 1/3) , each case of our model results in a single ESS, which is the attractor for the
dynamics given by (1). In the notation of Bomze [? ], the games we consider fall into the120

following two groups: (i) “no fixed point in the interior simplex” and “no edge pointwise fixed”;
and (ii) they will exhibit “one fixed point in interior simplex” and “three non-corner fixed points
on edges”.

Based on the frequency of the T− cells at the ESS, we can divide the 22 cases for replicator
dynamics into three different groups (Table 2):125

I. (positive) The ESS frequency of T− cells is 0 – such tumors should respond strongly to
abiraterone

II. (neutral) The ESS frequency of T− cells is between 0 and 0.15 – such tumors may respond
to abiraterone

III. (negative) The ESS frequency of T− cells is greater than 0.15 – such tumors may correspond130

to non-responders

2.4. Spatial replicator dynamics in metastatic castrate-resistant prostate cancer

In this section, we model the density and frequency dynamics of the prostate cancer cells
as a spatial game on a continuous space. We imagine the cancer cells as players on a torus
Θ = [0, 50) × [0, 50) with periodic boundary conditions. Rather than having a fixed grid or135

lattice, cells can exist at any point on this surface. Initially, there are 99 cancer cells (33 of each
type), scattered randomly within the central zone C = [20, 30]× [20, 30] of the flat torus Θ.

For the spatial game we specify rules regarding cell death, density-dependent interactions,
frequency-dependent interactions and cell proliferation, which occur in generations. During a
generation all living cells are selected in a random order to undergo the following actions:140
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Figure 1: The trajectories of cell type frequencies for each matrix from Table 2, ordered by group. The vertices of
the simplex correspond to a frequency of 1 for the corresponding cell type. The red dots represent the ESS’s and
the black dots represent the saddle points.
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# (a, b, c, d, e, f) ESS Group

1 (0.6,0.3,0.5,0.4,0.2,0.1) ( 6
11

, 5
11

,0)

I (positive)

2 (0.6,0.2,0.5,0.3,0.4,0.1) ( 6
11

, 5
11

,0)

3 (0.6,0.2,0.5,0.4,0.3,0.1) ( 6
11

, 5
11

,0)

4 (0.5,0.3,0.6,0.4,0.2,0.1) ( 5
11

, 6
11

,0)

5 (0.5,0.2,0.6,0.3,0.4,0.1) ( 5
11

, 6
11

,0)

6 (0.5,0.2,0.6,0.4,0.3,0.1) ( 5
11

, 6
11

,0)

7 (0.4,0.3,0.6,0.5,0.2,0.1) ( 2
5

, 3
5

,0)

9 (0.4,0.2,0.6,0.5,0.3,0.1) ( 2
5

, 3
5

,0)

11 (0.3,0.2,0.6,0.5,0.4,0.1) ( 1
3

, 2
3

,0)

14 (0.6,0.1,0.5,0.4,0.3,0.2) ( 6
11

, 5
11

,0)

17 (0.5,0.1,0.6,0.4,0.3,0.2) ( 5
11

, 6
11

,0)

20 (0.4,0.1,0.6,0.5,0.3,0.2) ( 2
5

, 3
5

,0)

8 (0.4,0.2,0.6,0.3,0.5,0.1) ( 11
30

, 17
30

, 2
30

)

II (neutral)
10 (0.3,0.2,0.6,0.4,0.5,0.1) ( 10

35
, 22
35

, 3
35

)

12 (0.6,0.1,0.5,0.3,0.4,0.2) ( 14
31

, 13
31

, 4
31

)

15 (0.5,0.1,0.6,0.3,0.4,0.2) ( 11
27

, 14
27

, 2
27

)

13 (0.6,0.1,0.5,0.2,0.4,0.3) ( 1
3

, 1
3

, 1
3

)

III (negative)

16 (0.5,0.1,0.6,0.2,0.4,0.3) ( 7
25

, 10
25

, 8
25

)

18 (0.4,0.1,0.6,0.3,0.5,0.2) ( 1
4

, 2
4

, 1
4

)

19 (0.4,0.1,0.6,0.2,0.5,0.3) ( 5
30

, 11
30

, 14
30

)

21 (0.3,0.1,0.6,0.4,0.5,0.2) ( 2
12

, 7
12

, 3
12

)

22 (0.3,0.1,0.6,0.5,0.4,0.2) ( 7
35

, 22
35

, 6
35

)

Table 2: Division of the 22 cases for replicator dynamics (3) into 3 groups according to the ESS frequencies
of T− cells. No T− cells (group I) indicate a highly treatable tumor, a low frequency of T− cells indicates a
moderately treatable tumor (group II), while a high frequency of T− cells (group III) indicates an untreatable
tumor (non-responders).

Cell death. We imagine that cell death can be either stochastic or deterministic. A cancer cell dies
with either a fixed probability (stochastic) or after a fixed number of generations (deterministic).
If the focal cell dies, it does not undergo any further actions. Following death, the cell either
stays in the field permanently or is removed after a pre-specified number of generations. The
combinations of deterministic or stochastic cell death and the rate at which dead cells stay in the145

field (5 generations, 30 generations, or permanently) generate six possible mortality regimes (see
Table 3). If the focal cell remains alive, it undergoes the next action.

Scenario
Mortality regime

Cell death Dead cells staying in field
1 Stochastic (probability 5%) Short (5 generations)
2 Deterministic (20 generations) Permanently
3 Stochastic (probability 5%) Permanently
4 Deterministic (20 generations) Long (30 generations)
5 Deterministic (20 generations) Short (5 generations)
6 Stochastic (probability 5%) Long (30 generations)

Table 3: Six scenarios corresponding to six mortality regimes

Density-dependent cell interactions. We imagine that available space and resources are necessary
for successful cell proliferation. We define the density-dependence neighborhood as a disc around
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the focal cell with a pre-specified radius, called the density-dependence radius (Figure 2a). If the150

number of cells (itself and dead cells included) within this density-dependence neighborhood is
greater than or equal to 10 cells per unit area, then the focal cell cannot proliferate and it does
not move onto additional actions in the current generation. If the density of cells within the
density-dependence neighborhood is less than 10 cells per unit area then the focal cell moves onto
the next action.155

Frequency-dependent cell interactions. We imagine the cells also have a frequency-dependence
neighborhood, which is a disc around the focal cell with a pre-specified radius, called the frequency-
dependence radius (Figure 2b). The focal cell randomly selects a neighbor cell from the living
cells occurring within this frequency-dependence neighborhood. Having selected the focal cell’s
“opponent” for the game we move to the last action.160

Cell proliferation. The probability of the focal cell undergoing cell division and producing a
daughter cell is determined by the payoff from the matrix A if we let the type of the focal cell
be the row strategy and the type of the opponent be the column strategy (Table 1). If the
focal cell reproduces, it generates a daughter cell of its own type. This daughter cell is not
placed in the field immediately, but only after all living cells have completed their actions for165

the current generation. A given daughter cell is placed at a random location in the focal cell’s
dispersal neighborhood (Figure 2c). The dispersal neighborhood is a disc around the focal cell
with pre-specified radius, called the dispersal radius.

(a) (b) (c)

Figure 2: A focal cell and its three neighborhoods. (a) Density-dependence neighborhood. A focal cell might
proliferate if the density of cells within the disc defined by the density-dependence radius is below a threshold.
(b) Frequency-dependence neighborhood. The focal cell’s likelihood of proliferating will be determined from an
interaction between it and a randomly selected cell from within the disc defined by the frequency-dependence
radius. (c) Dispersal neighborhood. If a focal cell proliferates, its daughter cell is placed randomly within the disc
defined by the dispersal radius.

3. Tumor growth and composition

In this section we simulate tumor growth under the six different mortality regimes (Table 3).170

We compare the tumor composition of the six scenarios with the ESS of the non-spatial models
for the 22 payoff matrices. In the simulations we track changes in

1. the total number of cancer cells (population dynamics)

2. the frequencies of cell types (frequency dynamics)

3. the dispersion pattern of each cell type175

Each simulation begins with 99 cells (33 per cell type), placed randomly in the central 10 × 10
zone of the flat torus Θ = [0, 50) × [0, 50). We ran simulations for 2000 generations. For each
combination of the mortality regime (Table 3) and payoff matrix we repeated the simulation five
times. This resulted in 660 simulations. For these simulations, we set the density-dependence,
frequency-dependence, and dispersal radii to one. The density threshold for reproduction was set180
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to 10 cells per unit area within the focal cell’s density-dependence neighborhood. To evaluate
the spatial dynamics and for comparisons to the ESS of the non-spatial model, we need stability
concepts for spatial equilibria in terms of the densities and frequencies of the three cell types.
Here, we will consider a spatial equilibrium stable if the frequencies in each two consecutive
generations have a difference less than 0.001 in the 50 past generations, as stated formally in185

Definitions 3.1 and 3.2:

Definition 3.1 (Stable frequency in the spatial game). Frequency xi of type i ∈ T is sta-
ble in generation τ if |xi(t+ 1)− xi(t)| ≤ 0.001 for all generations t ∈ {τ − 49, τ − 48, ..., τ}.

Definition 3.2 (Stable spatial equilibrium). A spatial equilibrium is stable in generation τ
if the frequencies of all three types (T+, TP , T−) are stable in this generation.190

In the reminder of the paper, whenever we refer to “equilibria”, what we mean is “stable
equilibria”, just to simplify the notation.

We might be able to observe two different types of (stable) equilibria: The transient (stable)
equilibrium and saturated (stable) equilibrium. The former might occur when the total number
of tumor cells is still growing, while the latter occurs once the space is saturated, i.e., once the195

total population of living cells as well as populations per type in the tumor do not change (due
to the finite size of the field Θ). In order to quantify when such equilibria occur, we define the
transient and saturated equilibria in Definitions 3.3 and 3.4.

Definition 3.3 (Transient stable spatial equilibrium). A stable spatial equilibrium in gen-
eration τ is called transient if the sum of populations of T+, TP , and T− cells keeps growing in200

generations {τ − 49, τ − 48, ..., τ}.

In the following definition, we use the term maximal total population, which refers to the largest
total population of cells reached over the run of the simulation, including both dead and living
cells in this count.

Definition 3.4 (Saturated stable spatial equilibrium). A stable spatial equilibrium in gen-205

eration τ is called saturated if the total cell population stays within 1 % of its maximal population
size in generations {τ − 49, τ − 48, ..., τ}.

3.1. The effects of the mortality regime on tumor growth

Whether death is stochastic or deterministic and how long dead cells remain in the tumor
strongly influence both the transient and saturated spatial equilibria. Figure 3 shows the spatial210

dynamics of matrix #19 for each scenario from Table 3. By generation 200 for matrix #19, the
frequencies of cell types have reached transient equilibria in all scenarios even as the entire space
has yet to be filled (Figure 4). In scenario 1 (mortality regime: stochastic death and removal
of dead cells after 5 generations) we observe that T+, TP , and T− cells are rather well mixed
with dead cells and the tumor is tightly packed throughout. A similar tumor is observed in215

scenario 5 (mortality regime: deterministic death after 20 generations and removal of dead cells
after 5 generations) and scenario 6 (mortality regime: 5% stochastic death and removal of dead
cells after 30 generations), while more dead cells are observed in the field in scenario 6 (with ≈
60% cells dead) than in scenario 1 (with ≈ 20% cells dead) and scenario 5 (with ≈ 22% cells
dead). In scenario 2 (mortality regime: deterministic death and no removal of dead cells) we220

see the formation of a necrotic core of densely packed dead cells. Scenario 3 (mortality regime:
5% stochastic death rate and no removal of dead cells) is similar to scenario 2, except that a
small number of living cells persist within the necrotic core. In scenario 4 (mortality regime:
deterministic death and removal of dead cells after 30 generations) the tumor becomes a ring
with an outer surface of living cells, an inner surface of dead cells and bulges of living cells225

recolonizing an otherwise empty center.
Figure 5 illustrates the tumors at their saturated equilibria for the six scenarios using payoff

matrix #19. In scenarios 1 and 4 the living cells of the three types are relatively well mixed. In

8



(a) (b)

(c) (d)

(e) (f)

Figure 3: Transient and saturated equilibria corresponding to the six different mortality regimes (Table 3). This
example uses payoff matrix #19. The generations depicting stable transient/saturated equilibria are marked in
gray. Scenarios 2 and 3 have no stable saturated equilibria as all cells die when saturation is reached. Each panel
shows the frequencies of the three cell types over the course of 2000 generations.

scenario 1 the entire space is filled. Dead cells are mixed with the living ones and the appearance
is similar to the transient equilibrium. In scenario 4 the ring shape of the tumor progresses to a230

more patchy distribution of living and dead cells surrounding patches of empty space. Scenarios 2
and 3 (no removal of dead cells) result in the filling of the space with dead cells.
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(a) (b) (c)

(d) (e) (f)

Figure 4: Tumors in space at the point where cell type frequencies achieve a stable transient equilibria. Subfigures
(a), (b), (c), (d), (e) and (f) correspond to scenarios 1, 2, 3, 4, 5 and 6 in Table 3, respectively, with payoff matrix
#19. T+, TP , T− and dead cells are denoted by blue, red, green and black color, respectively.

(a) (b) (c)

(d) (e) (f)

Figure 5: Tumors in space at the point where cell type frequencies achieve stable saturated equilibria. Subfigures
(a), (b), (c), (d), (e) and (f) correspond to scenarios 1, 2, 3, 4, 5 and 6 in Table 3, respectively, with payoff matrix
#19. T+, TP , T− and dead cells are denoted by blue, red, green and black color, respectively.

Tables 5, 6 and 7 (in Appendix C) record the transient and saturated equilibrium frequencies
of the three cell types for all six scenarios and for all 22 payoff matrices, respectively.

Based on the six scenarios and the twenty-two possible arrangements of payoff matrices, we235

observe the following:

• In scenario 1 (mortality regime: 5% stochastic death rate and removal of dead cells after 5
generations), the transient and saturated equilibrium frequencies for matrices from group I
(positive) are very close to the matrix game ESS, while their equilibrium frequencies for
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matrices from group II (neutral) and III (negative) deviate from the matrix game ESS. In240

conclusion, when the ESS for the matrix game contains just two cell types (T+ and TP ),
the spatial model yields cell type frequencies near identical to this ESS. When the ESS of
the matrix game contains all three cell types, the spatial game results in equilibrium cell
type frequencies quite different than the non-spatial ESS.

• In scenario 2 (mortality regime: deterministic death after 20 generations and no removal245

of dead cells), the transient equilibrium frequencies for matrices from group I (positive)
are close to the ESS while the transient equilibrium frequencies for matrices from group II
(neutral) and III (negative) deviate substantially from the non-spatial ESS. For matrices
in group II, T− cells die out during the transient equilibrium, and the frequencies of T+

and TP cells converge on the 2-strategy non-spatial equilibrium if only T+ and TP exist.250

For the matrices in group III, the transient equilibrium frequency of T− is much lower,
and the frequencies of T+ and TP cells are higher than the non-spatial ESS. There is no
stable saturated equilibrium as all cells die when the space is filled no matter which matrix
is examined. This is due to the existence of the necrotic core, which keeps spreading and
eventually takes over the entire field.255

• In scenario 3 (mortality regime: 5% stochastic death rate and no removal of dead cells),
the equilibrium frequencies are quite similar to those in scenario 2. The necrotic core
eventually takes over the space. While some living cells do survive for many generations,
they eventually fail to proliferate as they become surrounded by dead cells. Eventually, all
cells die.260

• In scenario 4 (mortality regime: deterministic death after 20 generations and removal of
dead cells after 30 generations), the transient equilibrium frequencies are quite similar to
these in scenarios 2 and 3. For matrices from group I (positive) the frequencies of T+ and
TP cells are close to the ESS (T− are absent from the ESS); for matrices from group II
(neutral) T− cells die off leaving a transient equilibrium with just T+ and TP cells close265

to their 2-strategy ESS. For matrices in group III, T− cells persist but have much lower
frequencies than predicted by the ESS. For all matrices and mortality regimes the transient
phase sees a tumor that grows as an expanding ring. Living cells inhabit the outer edge of
the ring and dead cells the inner edge. At the saturated equilibrium the thickness of the
dead cells on the ring influences the spatial dynamics and cell type frequencies. A thinner270

ring of dead cells during the transient phase permits live cells to recolonize the empty space
inside the ring, giving rise to a saturated equilibrium as shown in Figure 5d. A thicker band
of dead cells results in a tumor at saturation that has large empty spaces and a relatively
low number of living cells. The frequencies of cell types at the saturated equilibria for
matrices from group I (positive) and matrices #8, #12 and #15 deviate substantially from275

the non-spatial ESS as clumps of living cells become separated and patchy due to the large
empty spaces within the tumor. The saturated equilibrium frequencies for the remaining
matrices are close to a 2-strategy ESS, as either T+ or T− dies out; TP cells occur at higher
frequencies than expected by the ESS for all matrices in groups II and III.

• In scenario 5 (mortality regime: deterministic death after 20 generations and removal of280

dead cells after 5 generations), the transient equilibrium frequencies as well as the saturated
equilibrium frequencies are very close to those generated from scenario 1.

• In scenario 6 (mortality regime: 5% stochastic death rate and removal of dead cells after 30
generations), the transient and saturated equilibrium frequencies for matrices from group I
(positive) are close to the ESS, while their equilibrium frequencies for matrices from group II285

(neutral) and III (negative) deviate from the ESS.

The mortality regime is paramount in determining tumor architecture. With no removal of dead
cells (scenarios 2 & 3), the space becomes filled with dead cells and the ultimate survival of the
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tumor would require unbounded space for living cancer cells to invade. When dead cells take
a long time to disappear, the tumor exhibits rings of living cells surrounding necrotic regions,290

the tumor dies off (scenario 4), or dead cells represent over half of those visible in the tumor
(scenario 6). The arrangement of these empty patches within the tumor becomes dynamic as
some patches become colonized by living cells and new empty patches form. Regardless, the
overall abundance of live cancer cells is much reduced because of the empty spaces and the long
persistence of dead cells. If dead cells persist for only a short number of generations (scenario 1295

& 5) the tumor grows and fills the entire space as a contiguous population of living cells. The
living cells both expand along the margin of the tumor and continually repopulate the core of
the tumor as cells die and disappear. The saturated equilibria in scenario 1 result in high and
persistent populations of cancer cells; though the mosaic of cell types changes constantly at small
spatial scales.300

3.2. Spatial vs. non-spatial dynamics

To compare in more detail the dynamics and equilibria of the spatial versus non-spatial mod-
els, we consider the saturated equilibria for the 22 payoff matrices under just the first scenario
(stochastic mortality and short duration before removing dead cells). This scenario produces a
highly dynamic tumor that saturates at dense populations of living cells. We focus on the three305

important themes in tumorigenesis:

1. the population size of live cancer cells at the saturated equilibrium

2. the frequencies of cell types at the saturated equilibrium

3. the dispersion patterns of cell types within the tumor

To measure the dispersion pattern of a given cell type within the saturated tumor, we use the
variance-to-mean ratio [? ]. The variance-to-mean ratio of type i ∈ T is defined as

ρi =

N∑
k=1

(nki − n̄i)2

(N − 1)n̄i
(2)

where the space is evenly divided into N = 900 subsquares. Varying the number of subsquares a310

bit gives us qualitatively similar results, therefore we consider N = 900 as being representative.
Quantity nki is the number of type i cells in the k-th subsquare and n̄i is the average number
of type i cells per subsquare. The variance-to-mean ratio provides a quantitative measure of
spatial dispersion or clumpiness (i.e., degree of aggregation of cells within certain regions of the
field) [? ]: A variance-to-mean ratio ρi = 1 indicates that cells of type i are randomly dispersed315

in space, a ρi > 1 indicates a clumped dispersion, and a ρi < 1 indicates an over-dispersed or
more uniform dispersion in space.

For the 22 payoff matrices at saturated equilibria, Table 4 depicts the living population size,
cell type frequencies, the variance-to-mean ratio for each cell type, and the ESSs for the non-
spatial model. Results show the mean value for 5 runs. Standard deviations were very low and320

so we omit them from the table. In all runs, population sizes rose rapidly until the space was
completely filled, usually after about 500 generations.

In terms of population size, there are only small differences between the 22 payoff matrices;
though two subtle patterns are evident (Table 4). Matrix 2 of group I had the highest mean
of 17837 living cells, and matrix 19 of group III had the lowest mean of 17427; a mere 2.3%325

difference. In the absence of any cell death, 25000 represents an absolute maximum cell density
because in our model no cell proliferation can occur when cell densities are at or above 10 cells
per unit area.

We observe the following:

• Tumors from group III (negative) reach slightly smaller population sizes when the frequency330

of T− is greater than 0.1. There is also a small and negative correlation between the clumping
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Group # Saturated ESS Saturated equilibrium Variance-to-mean
equilibrium frequencies ratio

population size (T+,TP ,T−) (T+,TP ,T−) (T+,TP ,T−)

I (positive)

1 17746.4 (0.5455,0.4545,0) (0.5474,0.4526,0) (0.9559,1.0370,-)
2 17837 (0.5455,0.4545,0) (0.5482,0.4518,0) (0.9867,1.0673,-)
3 17772.4 (0.5455,0.4545,0) (0.5469,0.4531,0) (0.9709,0.9536,-)
4 17754.6 (0.4545,0.5455,0) (0.4515,0.5449,0) (0.9615,0.9557,-)
5 17763.4 (0.4545,0.5455,0) (0.4505,0.5495,0) (1.0550,0.9706,-)
6 17773.2 (0.4545,0.5455,0) (0.4512,0.5488,0) (1.0489,0.9667,-)
7 17778.8 (0.4000,0.6000,0) (0.3987,0.6013,0) (1.1149,0.9115,-)
9 17718.4 (0.4000,0.6000,0) (0.3992,0.6008,0) (1.1116,0.9147,-)

11 17809.2 (0.3333,0.6667,0) (0.3287,0.6713,0) (1.1676,0.8946,-)
14 17788 (0.5455,0.4545,0) (0.5482,0.4518,0) (0.9586,1.0608,-)
17 17790.4 (0.4545,0.5455,0) (0.4561,0.5439,0) (1.0111,0.9879,-)
20 17817.6 (0.4000,0.6000,0) (0.3991,0.6009,0) (1.0572,0.8402,-)

II (neutral)

8 17636.6 (0.3659,0.5659,0.0682) (0.3926,0.6069,0.0025) (1.1422,0.7932,7.8522)
10 17779.2 (0.2856,0.6287,0.0857) (0.3280,0.6691,0.0029) (1.1337,0.8275,9.3954)
12 17730 (0.4516,0.4149,0.1290) (0.5419,0.4532,0.0050) (1.0083,1.1209,8.6381)
15 17747.4 (0.4074,0.5185,0.0741) (0.4494,0.5453,0.0053) (1.0836,0.9507,9.2382)

III (negative)

13 17547.4 (0.3333,0.3333,0.3333) (0.3324,0.3368,0.3308) (2.0569,1.6380,2.2931)
16 17596.6 (0.2800,0.4000,0.3200) (0.2506,0.4123,0.3371) (2.9114,1.5339,2.5050)
18 17524.8 (0.2500,0.5000,0.2500) (0.2518,0.5151,0.2327) (2.5338,1.1878,3.0966)
19 17427 (0.1667,0.3667,0.4667) (0.1342,0.3638,0.5021) (3.1905,1.3738,1.3250)
21 17451 (0.1667,0.5834,0.2500) (0.1525,0.6020,0.2455) (3.4840,0.9954,2.4489)
22 17484.4 (0.2016,0.6285,0.1699) (0.2218,0.6469,0.1313) (2.7141,0.7627,4.4589)

Table 4: Saturated equilibrium population sizes, ESSs, saturated equilibrium frequencies and variance-to-mean
ratios for each of the 22 matrices

of cell types (high variance-to-mean ratios) and their population size. We conclude that a
smaller population size results because tumors with high T− frequencies exhibit a clumped
dispersion. This clumping of all cell types reduces proliferation rates from like cell types
interacting.335

• Population sizes are relatively large for matrices from group I where only T+ and TP

coexist. These tumors have near random dispersion patterns by cell type; thus eliminating
non-random, positive assortative interactions by cell type. Matrices from group II (low
frequency of T−) have population sizes close to those of group I. In group II, only T− cells
exhibit substantial clumping; but they are too few to impact the tumor’s overall population340

size.

Many of the payoff matrices result in large differences between the cell type frequencies in the
spatial model as compared to the non-spatial ESS (Table 4) We highlight 2 results:

• Spatial dynamics converge to the ESS for all of the matrices in group I. With these matrices
only T+ and TP persist in both replicator and spatial dynamics.345

• For matrices in groups II and III, the rarest cell type in the ESS suffers and equilibrates
at a lower frequency then predicted by the ESS. For matrices in group II (neutral), T−

does much worse than at the ESS. Also, a highly clumped dispersion occurs for T− cells
for these matrices. For matrices #16, #19 and #21 of group III, T+ cells do much worse
than predicted by the ESS. In these cases, the T+ cells have a highly clumped dispersion.350

Figure 6 shows examples of different saturated equilibria with different levels of clumping.
For matrix #7 (group I), we see the spatial population converging to the ESS with a random
dispersion of both T+ and TP cells (Figure 6a). The tumors become quite well mixed for all
saturated equilibria from group I payoff matrices. For matrices #19 and #22, respectively,
the cell type that does worst relative to the ESS has the highest variance-to-mean ratio at the355

saturated spatial equilibria (Figures 6b and 6c). This result holds for all matrices in groups II
(neutral) and III (negative).

Whether cell clumping is observed or not depends on the particular payoff matrix. No cell
clumping happens for the matrices in group I, in which ESSs have no T− cells. In the spatial
model, when T− cells die out, T+ and TP cells can only proliferate by interacting with each other,360
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(a) (b) (c)

Figure 6: Snapshots of the field at saturated equilibria when (a) spatial dynamics converge to the ESS, (b) T+

does worse in space than it does at the ESS, and (c) T− does worse in space than it does at the ESS. T+, TP ,
T− and dead cells are denoted by blue, red, green and black color, respectively.

because the diagonal of each payoff matrix is 0. We conclude that the inter-cell type facilitation
leads to the two cell types becoming well mixed with each other. Cell clumping (either T+ or
T− cell clumping) is observed for matrices in groups II and III, for which ESSs have three types
present. Interestingly, across all matrices, TP always shows low levels of clumping. Its dispersion
is always near random, or for some matrices, over-dispersed. In the first 10 generations, all cell365

types exhibit a clumped dispersion, due to the small dispersal radius. However, TP cells always
grow fast and spread rapidly across the field, because TP cells enjoy an initially high average
payoff when compared to other types, i.e., 1

3 (c+ d) ≥ 1
3 (a+ b) ≥ 1

3 (e+ f) or 1
3 (c+ d) ≥ 1

3 (e+ f)
≥ 1

3 (a + b). The spread of TP cells provides a higher probability of interacting with the other
two cell types. As a result, TP cells keep growing and spreading. Eventually, TP cells become370

randomly or over-dispersed throughout the tumor.

4. Effects of the frequency-dependence radius, the dispersal radius and the density-
dependence radius on spatial equilibria

In this section we investigate the effects of independently varying the frequency-dependence,
dispersal and density-dependence radius on the eco-evolutionary dynamics of the spatial model.375

The spatial game will be analyzed with matrices #7 (group I; no T− cells in the ESS), #8 (group
II; low frequency of T− cells in the ESS), and #22 (group III; high frequency of T− cells in the
ESS) as these are typical representatives of their groups.

4.1. Effect of the frequency-dependence radius

We compared the outcomes of the spatial game when the frequency-dependence radius was set380

to 0.5, 1, 10, and 50, while holding the dispersal and density-dependence radii to 1. Regardless
of the frequency-dependence radius, T− cells die out for the group I matrix #7 (Figure 7b). For
group II matrix #8 and group III matrix #22 the frequencies of T− approach their non-spatial
ESS values as the frequency-dependence radius increases (Figure 7b).

Interactions become random with respect to cell type once the frequency dependence radius385

encompasses the entire field. When this happens the equilibrium of the spatial model must con-
verge on the ESS of the non-spatial model. The probability of a focal cell interacting with a
neighbor of type j ∈ T equals the overall frequency of type j. The saturated equilibrium frequen-
cies are very close to the ESS (with maximal difference ±0.001). As the frequency-dependence
radius increases all cell types exhibit an increasingly clumped dispersion (Figures 7 and 13). The390

variance-to-mean ratio increases with the frequency-dependence radius because the game now
involves distant cells even as daughter cells remain close together.

4.2. Effect of the dispersal radius

We compared the outcomes of the spatial game when the dispersal radius was set to 0.5, 1, 10,
and 50, while holding the frequency-dependence and density-dependence radii at 1. Like increasing395
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(a) Frequency of T− (b) Variance-to-mean ratios

Figure 7: Effect of the frequency-dependence radius. (a) Saturated equilibrium frequency of T− cells for matrices
#7, #8 and #22. (b) Saturated equilibrium variance-to-mean ratios of all types for matrices #7, #8 and #22.

the frequency-dependence radius, increasing the dispersal radius results in a convergence of the
cell type frequencies on the ESS (Figure 8b). Moreover, when the dispersal neighborhood covers
the entire field (dispersal radius of 50), the spatial equilibrium frequencies are nearly identical to
their ESS (with difference ±0.001). Increasing the dispersal radius reduces the variance-to-mean
ratio for all cell types. A high dispersal radius disperses daughter cells widely and creates a within400

cell type dispersion pattern that is random or even over-dispersed (Figures 8b and 13).

(a) Frequency of T− (b) Variance-to-mean ratios

Figure 8: Effect of the dispersal radius. (a) Saturated equilibrium frequency of T− for matrices #7, #8 and #22.
(b) Saturated equilibrium variance-to-mean ratios of all types for matrices #7, #8 and #22.

4.3. Effect of the density-dependence radius

We compared the outcome of the spatial game when the density-dependence radius is set to
0.5, 1, 10, and 50, while holding the frequency-dependence and dispersal radii at 1. The frequency
of cell types in the saturated community converge to the ESS as the density-dependence radius405

increases. Group I matrix #7 leads to no T− cells in the field. For group II matrix #8 and
group III matrix #22 the frequencies of T− approach their non-spatial ESS values as the density-
dependence radius increases (Figure 9b). We observe very high levels of clumping by cell type
when the density-dependence radius is 10 and 50. Curiously, a density-dependence radius of 10
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results in a higher variance-to-mean ratio than a density-dependence radius of 50 (Figure 9b).410

When the density-dependence radius is low the tumor expands to fill the entire space (Figure 11a).

(a) Frequency of T− (b) Variance-to-mean ratios

Figure 9: Effect of the density-dependence radius. (a) Saturated equilibrium frequency of T− for matrices #7,
#8 and #22. (b) Saturated equilibrium variance-to-mean ratios of all types for matrices #7, #8 and #22.

At a high density-dependence radius of 10 the tumor becomes a number of densely packed clusters
with empty spaces between these clusters (Figure 10b). Each cluster has a very high density in
the interior and a much lower density at its exterior. With a density-dependence radius that
encompasses the entire space (= 50), we observed one large cluster of cells (Figure 10c). A large415

density-dependence radius permits cells to proliferate rapidly and for prolonged periods. It takes
longer for density limitations to be reached. Yet, the low dispersal radius causes cells to bunch
up as clusters (= 10) or as a single cluster (= 50; Figures 11c and 13).

(a) (b) (c)

Figure 10: The appearance of the simulated tumors for matrix #22 when the density-dependence radius is set to:
(a) 1, (b) 10, and (c) 50. Each figure is at saturated equilibrium following 2000 generations.

5. Concluding remarks

We used an agent-based, spatially-explicit model to study tumor dynamics as an evolutionary420

game. The individual cancer cells represent the players, three cell types represent their strategies,
and interactions between cells result in payoffs that influence a given cell’s proliferation rate. We
used a continuous space model meaning that cancer cells can occupy any point in the space.
We included density-dependent effects where limited space and resources place upper bounds on
the number and density of cancer cells inhabiting the resulting tumor. We included frequency-425

dependent effects by having three cell types. The proliferation rate of a given cancer cell is
influenced by its type and the cell types around it. The tumor itself grows as daughter cells
disperse some distance from proliferating cells.
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Figure 11: Cell numbers per subsquare of the simulated tumors for matrix #22 when the density-dependence
radius is set to: (a) 1, (b) 10, and (c) 50. These cell density distributions correspond to the panels of Figure 10.

(a) (b) (c)

Figure 12: Simulated tumors after 2000 generations for matrices (a) #7, (b) #8, and (c) #22. The density-
dependence radius has been set to 50, thus resulting in densely packed tumors. Furthermore, there are varied
levels of clumping by cell type and by matrix as shown by the variance-to-mean ratios. For matrix #8 and #22,
the T− cells are strongly clumped and over-dispersed, respectively.

The model is intended for metastatic castrate-resistant prostate cancer where up to three
different cell types may coexist within the tumor: T+ (cells with androgen receptors and requiring430

an external source of testosterone), TP (cells capable of producing their own testosterone, some
of this becomes publicly available to other cells), and T− (cells that lack androgen receptors, and
neither synthesize nor require testosterone). We extend a matrix game model based upon these
three cancer cell types and their known biology [? ]. Of interest in the modeling is the resulting
success and frequency of the T− cells as this likely relates to the success of subsequent therapy.435

Advanced prostate cancer generally metastasizes to the bone and may eventually form tumors
in one to over a dozen locations within the patient’s skeleton. Such tumors seem to be largely
composed of T+ cells that respond well to anti-androgen therapy. But, therapy may fail and
the tumor progresses to metastatic androgen resistance. This may occur through the emergence
of TP cells and/or T− cells. By producing testosterone, TP cells “rescue” the T+ cells and440

may promote their resurgence within the progressing cancer. The next line of therapy (e.g.,
abiraterone) targets the mechanisms used to create testosterone. If T− cells are absent to rare
then such therapy should show success, but if T− cells form a sizeable portion of the tumor,
then such patients will be non-responders and the targeted therapy may fail immediately. The
underlying matrix game can take on 22 distinct forms based on the rank-ordering of payoffs within445

the matrix. Interestingly, 12 of these show an absence of T− at the ESS, 4 show a low frequency
of T− cells coexisting with T+ and TP cells, while 6 show a high frequency of T− cells at the
ESS.

Our model is intended to make several advances and contributions to spatially-explicit models
of tumor growth. First, we consider different mortality regimes that result in substantially differ-450
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Figure 13: Simulated tumors resulting from setting either the frequency-dependence, dispersal, or density-
dependence radius to the highest level (shown as the rows) while holding the other two at 1. The columns represent
different payoff matrices, and the simulations were run for 2000 generations insuring a saturated equilibrium.

ent patterns of tumor growth. In comparing scenarios corresponding to different mortality regimes
we see distinctive transient and saturated equilibria. Second, we compare the saturated equilibria
frequencies of cell types in the spatial game with the ESS of the non-spatial matrix game. Third,
we vary the neighborhood size over which density-dependent and frequency-dependent effects
can occur – such a case study had not yet been performed with spatial models. Fourth, we can455

vary the dispersal distance of daughter cells - this is an important component of what have been
termed “grow-or-go” spatial models of tumor growth where cancer cells are presumed to have a
trade-off between proliferation rate and dispersal ability [? ].

We ran six scenarios corresponding to mortality regimes representing extremes of stochastic
mortality rates versus fixed cell lifespans, and rapid decomposition versus no decomposition of460

dead cells. With a fixed lifespan, the tumor grows outwards as a ring leaving behind a core of dead
cells that eventually decompose to leave an empty interior. This mimics the formation of a necrotic
core as seen in many tumors. A ring of dead cells forms a barrier that retards the proliferation
of nearby living cells. But, eventually some daughter cells cross into the space left by the now
decomposed dead cells. The living cells that cross the barrier create their own smaller rings465

of proliferation and mortality that maintain various empty “necrotic” spaces. These successive
generations of proliferation and death create an ever changing mosaic of rings of living cells,
dead cells and empty spaces. While we did not explore this in detail, it presents an intriguing
simulation applicable to real tumors where the necrotic regions are not static but subject to
recolonization. When dead cells never decompose and simply accumulate the simulated tumor470

at first grows outwards even as a necrotic core forms. In this case the necrotic region becomes
crowded with dead cells and can never be recolonized by living cancer cells. In the absence of
continued expansion, the tumor would eventually run out of space and becomes a mass of dead
cells. What of actual tumors? A fairly regular turnover of cells within the tumor via cell births
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and deaths and a rapid decomposition of dead cells are likely the norm [? ? ]. Necrotic regions475

likely occur not because of fixed life spans of cancer cells, but because of tumor heterogeneity in
other properties such as blood flow, oxygen and pH.

With respect to the frequency of cancer cell types, we examined the transient and saturated
equilibria of the model tumors. We observe an interesting difference between these two equilibria,
which corresponds to actual tumors. Prostate cancer at an early stage, i.e., in our case in a480

transient phase, is likely more treatable as the number of T− cells remains low. Ideally, treatment
should start at this early stage and this makes studying spatial dynamics at a transient phase
important. Yet, diagnosis or therapy may not occur until a saturated equilibrium has occurred
where a given tumor has reached a large size and become less treatable.

In our spatial model, the saturated equilibrium frequencies of cell types frequently deviated485

from the non-spatial ESS, and such discrepancies vary with the 22 possible payoff matrices.
Matrices with an ESS of just two cell types show no discrepancies between the spatial and non-
spatial models. When the ESS includes all three cell types, the rarest strategy at the ESS
(generally the T+ or T− cell type) tends to suffer in the spatial game and exhibit a lower steady-
state frequency than predicted by the non-spatial ESS. In fact, for some matrices with very low490

T− frequencies at the non-spatial ESS, T− goes extinct for most replicates of the simulations.
Clumping or kin effects explain this property of the spatial model. With a relatively small
dispersal radius, cell types become clumped and hence a cell type interacts with its own type more
than would be expected by chance. This is a standard property of many spatial models, and in
fact can promote the evolution of cooperation [? ]. But here, this matrix model of prostate cancer495

“punishes” like interacting with like, and so positive assortative interactions reduce proliferation
rates. The more clumped a cell type, the greater this disadvantage. With just two cell types,
there is little clumping. With three cell types, all else equal, the rarer cell types become more
clumped, and T− seems to become more clumped than either TP or T+.

The clumping of cell types observed in our spatial model has significance for drawing inferences500

from the distribution of different cell types within actual tumors. The spatial segregation of cell
types sometimes observed in actual tumor biopsies may indicate underlying heterogeneity in
blood vasculature, pH, or position with respect to the edge or interior of the tumor [? ? ].
But, as in our model, it may not indicate any underlying habitat structure within the tumor.
The clumped distribution of cancer cells by type may simply reflect limited dispersal of daughter505

cells following proliferation. As expected, increasing the dispersal radius eliminates clumping and
results in a convergence of the spatial model’s cell-type frequencies with those of the non-spatial
ESS. Complete convergence occurs when the dispersal radius encompasses the entire space as
well.

While a small dispersal radius promotes clumping, a small frequency-dependence radius acts510

against clumping as like interacting with like suppresses proliferation. The emergent level of
clumping reflects these opposing forces. Like the dispersal radius, increasing the frequency-
dependence radius results in convergence of the spatial model’s cell type frequencies to those
of the non-spatial ESS – but with an important caveat. Increasing the frequency-dependence
radius actually results in extensive clumping by cell type, sometimes resulting in the near perfect515

segregation of cell types in space. When the frequency-dependence radius encompasses the en-
tire tumor, then cell-cell interactions occur at random, regardless of clumping. Hence, frequency
interactions no longer counterbalance the clumping caused by a limited dispersal radius. Our
results highlight to the need to pay more attention to the interplay between the distance over
which cells disperse and the neighborhood size over which frequency-dependent interactions take520

place. For instance, in grow-or-go models dispersal occurs at a larger scale than cell-cell interac-
tions. The converse happens in models where a cell experiences the collective or diffuse actions of
a large number of perhaps distant neighbors. Measuring or inferring the spatial scale of dispersal
versus cell-cell interactions within actual tumors from biopsies presents both an opportunity and
a challenge.525

In our spatial model, we could independently vary the radius at which tumor cells experience
the negative effects of competition from neighbors and the radius at which cells interact in a
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frequency dependent manner based on their type. Whereas increasing the dispersal radius and the
frequency-dependence radius causes the cell type frequencies of the spatial model to converge to
those of the non-spatial ESS, increasing the density-dependence radius merely causes incomplete530

convergence. Increasing the density-dependence radius relative to the dispersal radius results in
different dispersion patterns of cells regardless of type. When smaller than the dispersal radius,
the cancer cells become almost uniformly dispersed in space. When the density-dependence and
dispersal radii are equal, the cancer cells are essentially randomly dispersed. When the density-
dependence radius is ten times the dispersal radius, the model no longer produces a continuous535

tumor spread across the space. Instead, the space is occupied by clusters of smaller tumors.
The small dispersal radius promotes clumping. The empty spaces between the micro-tumors
remain because of the long-distance suppression of proliferation by the densely packed cells of the
clusters. Finally, when the suppressive effects of the cancer cells on each other’s proliferation rates
span the entire space, then the tumor becomes a very dense single mass that does not expand to540

fully fill the space. The dispersal radius keeps cells clumped while the space-wide suppression of
proliferation prevents expansion beyond the boundaries of the tumor mass into the empty space.

Spatial models that have been introduced in the context of evolutionary game theory are usu-
ally confined to spatially explicit structures, such as graphs or lattices, including fields composed
of identical hexagonal or square cells. In these models, individuals are represented as vertices of545

the graph or cells in a regular field. Individuals usually interact with their immediate neighbors
and their payoffs and strategies depend on and evolve with these interactions. The simplest forms
of such models were originally adopted to study evolution of social behaviors [? ]. Early models
had no births and deaths. Later ones included additional interactions, reproduction, and death
rules to study evolution [? ? ? ]. Empty vertices, created when cells die or move and limitations550

on cells growth were included in these models as well. While such models are more general than
the original ones, they are still limited by assumptions on the structure of the field and definitions
of the neighborhood. In this paper we went beyond rigid spatial models, by putting forward a
continuous-space model of tumorigenesis. The advantage of using such a model is the flexibility
of the continuous space and of the action rules. In our previous work we have shown how varying555

a fixed number of neighbors majorly impacts the predictions of grid models [? ]. Moreover,
the continuous-space models seem to be more appropriate for modeling cancer where tumor cells
may occur throughout a space and at very different local densities. Even though more rigid
spatial models can be computationally efficient, this efficiency decreases rapidly when population
sizes become large or when the radii of density-dependence, frequency-dependence, and dispersal560

increase. Our implementation of the continuous-space model is efficient. A simulation running
on a standard computer cloud takes a matter of seconds or maximally minutes, independent of
population or interaction radii size.

In summary, we have shown that spatially-explicit evolutionary models often provide outcomes
that differ from those in non-spatial ones. This, together with the spatial character of real tumors,565

suggests that space is a key element of tumorigenesis. Moreover, we have shown that continuous-
space models are appropriate for modeling tumor growth, as they allow for flexibility of interaction
rules and the spatial scales crucial to cell proliferation. In this work, we show how the scale at
which cancer cells disperse and experience frequency- and density-dependent processes strongly
influences the frequency and dispersion patterns of cell types within the tumor. As a result,570

we have discovered various distinct cell dispersion patterns in space, such as near complete cell
segregation, random cell dispersion, and over-dispersion. Furthermore, the scale at which density-
dependent processes operate can alter tumor architecture and create continuous masses of cells,
separate clusters of cancer cells, and dense tumor masses surrounded by empty space. Some of
our results accord with clinical and laboratory observations and others may help in the further575

development of spatial evolutionary models of cancer.
Our model and results invite future research. First, the scenario in which rings of dead cells

form needs further and more detailed analysis, as results from such scenarios resemble real tumors
for many cancer types. Second, the spatial model can be expanded to include blood vasculature
and the immune system to determine tumor growth and heterogeneity. Third, the model can580

20



be used to test various regimes of cancer treatment. Of particular interest are therapies such
as adaptive or double-bind therapies [? ? ]. For our model, such therapies can be found using
Stackelberg game theory [? ].
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[34] F. Mateo, Ó. Meca-Cortés, T. Celià-Terrassa, Y. Fernández, I. Abasolo, L. Sánchez-Cid,
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Appendix A: Basics of the non-spatial model

In this appendix we introduce a non-spatial replicator equation model from [? ] that we740

compare to our spatial model. When individuals interact randomly with others over the entire
field, the saturated equilibrium strategy frequencies of our spatial game match those of the non-
spatial ESS. In general, the replicator dynamics [? ] represent one of the dynamics which, under
certain conditions, converge to the ESS.

For each cell type i ∈ T, the replicator dynamics define the time change ẋi of cell frequency
xi:

ẋi = xi(eiAx
> − xAx>), i ∈ T, (3)

with x(0) = (1/3, 1/3, 1/3) . Here matrix A is the fitness (or payoff) matrix, x = (xT+ , xTP , xT−)745

is a vector of cell type frequencies, and ei is the i-th row of a 3× 3 identity matrix. Each element
A(i, j) of the fitness matrix A defines a probability that a cell of type i will produce a daughter
cell of the same type when interacting with a cell of type j ∈ T. The non-spatial model (3)
assumes that the population of cells is well mixed and, therefore, a probability that a cell of type
i meets a cell of type j at time t is given by the frequency of the j cells in the entire population750

at time t.
We assume that each cell type competes most with its own type. Intra-type interactions do

not increase proliferation rates. For this reason, we have set the diagonal elements of A equal to 0
to reflect this lack of effect. The off-diagonal elements are positive (but less than 1) to reflect the
lower competition between cell types and the gains that can accrue to a cell type from interactions755

with an alternative cell type. Standardizing the elements so that the off-diagonal elements are
0 may introduce a possible artifact. In the spatial model these elements are the probability
of proliferating when two cells interact, and hence no proliferation can occur when two cells of
the same type interact. Thus, at least two cell types must be present for the tumor to grow.
Frequency-dependent processes favor the coexistence of the diverse cell types even as density-760

dependence limits the overall population size of cancer cells within the space. In Appendix D
we show that having 0 elements on the diagonal of the matrix does not influence any of the
conclusions qualitatively.

Therefore, A has the form

T+ TP T−

T+ 0 a b
TP c 0 d
T− e f 0

.

The rest of the elements of matrix A are assumed to be distinct from each other and from the765

interval (0, 1).
From pairwise experiments in vitro and from the properties of the individual types of cancer

cells we derive the following inequalities regarding the coefficients a–f [? ]: a > f, c > e, b < d,
a > b, c > d, and e > f.

The first three inequalities are based on observations regarding which cell type receives the770

greater benefit when interacting with a particular cell type:

• a > f : A T+ cell profits more than a T− cell from interacting with a TP cell, because a
TP cell produces a systematic testosterone that a T+ cell needs for proliferation. When
testosterone is available a T+ cell is expected to have a higher proliferation rate than a T−

cell.775

• c > e: A T+ creates a cellular infrastructure that a TP cell benefits from. Therefore, we
expect that a TP cell is more fit than a T− cell when interacting with a T+ cell.
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• b < d: When interacting with a T− cell, a T+ cell receives no testosterone to proliferate,
while a TP cell may profit from less competition for resources.

The rest of the inequalities are based on observations regarding which cancer cell type provides780

more benefit to a particular cell type:

• a > b: A T+ cell has a higher chance to proliferate when interacting with a TP cell than
when interacting with a T− cell, because a TP cell produces testosterone which a T+ cell
needs.

• c > d: A TP cell will be more fit when interacting with a T+ cell than compared to its785

interaction with a T− cell, as a TP cell gains extra resources from cellular infrastructure
that a T+ cell builds.

• e > f : A T− cell profits more from interacting with a T+ cell than from interacting with
a TP cell, because a T− may profit from the cellular infrastructure the T+ cell produces,
while it cannot utilize a systematic testosterone produced by a TP cell.790

While we know well which of the coefficients in the fitness matrix A are bigger than others, it
is currently impossible to measure their precise values. Therefore, as it was done in [? ], we
assume that parameters a–f have distinct values from the set {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}. There
are 22 different orderings of such coefficients a–f satisfying the six inequalities (Table 2), defining
22 distinct payoff matrices. We show how the non-spatial model varies with respect to different795

a–f matrix coefficients. We provide a sensitivity analysis of the non-spatial model regarding the
matrix coefficients in Appendix B.
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Appendix B: Sensitivity analysis of the non-spatial model with respect to individual
matrix coefficients

We provide a parameter sensitivity analysis regarding the values of a–f . The protocol is as800

follows: For each of the values from the set {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}, vary the element of matrix
A corresponding to this value by adding and subtracting 0.01, 0.02, . . . , 0.09, for all 22 matrices
from Table 2, while keeping all other values the same. Note that position of the element with
a particular value in matrix A may vary. For each of these 18 variations, we report how many
matrices belong to each of the groups, i.e., group I (positive), group II (neutral) and group II805

(negative), and mean and variance of the difference of the ESS frequencies obtained with respect
to the base case with original values of the parameter. Positive, neutral and negative refer to
therapeutic prognosis based on the frequency of T- cells that are unresponsive to abiraterone.
The results are summarized in Figure 14. For all parameter variations the 3 groups of matrices
are maintained, which means that our observations are not sensitive to the magnitude of the810

matrix elements but rather their rank ordering.
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Figure 14: Division of the matrices into groups per variation of the value from the set {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}

Appendix C: Tables of transient and saturated equilibria in six scenarios

This appendix includes tables 5–7 with detail information regarding the transient and satu-
rated equilibria for all scenarios introduced in this paper.
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Scenario 1 Scenario 2 Scenario 3
Group # Transient equilibrium Standard Transient equilibrium Standard Transient equilibrium Standard

frequencies deviation frequencies deviation frequencies deviation

(T+, TP , T−) (T+, TP , T−) (T+, TP , T−) (T+, TP , T−) T+, TP , T− T+, TP , T−

I (positive)

1 (0.5455,0.4543,0.0002) (0.0039,0.0040,0.0001) (0.5468,0.4532,0) (0.0042,0.0042,0) (0.5557,0.4443,0) (0.0028,0.0028,0)
2 (0.5428,0.4564,0.0008) (0.0035,0.0041,0.0004) (0.5474,0.4528,0) (0.0035,0.0035,0) (0.5463,0.4537,0) (0.0042,0.0042,0)
3 (0.5468,0.4523,0.0009) (0.0044,0.0041,0.0007) (0.5479,0.4521,0) (0.0039,0.0039,0) (0.5471,0.4529,0) (0.0035,0.0035,0)
4 (0.4543,0.5455,0.0002) (0.0030,0.0031,0.0002) (0.4509,0.5491,0) (0.0038.0.0038,0) (0.4557,0.5443,0) (0.0027,0.0027,0)
5 (0.4545,0.5446,0.0009) (0.0048,0.0041,0.0011) (0.4492,0.5508,0) (0.0027,0.0027,0) (0.4509,0.5491,0) (0.0057,0.0057,0)
6 (0.4560,0.5435,0.0005) (0.0035,0.0035,0.0005) (0.4519,0.5481,0) (0.0044,0.0044,0) (0.4518,0.5485,0) (0.0032,0.0032,0)
7 (0.3902,0.6095,0.0003) (0.0025,0.0023,0.0004) (0.3986,0.6014,0) (0.0056,0.0056,0) (0.3903,0.6097,0) (0.0045,0.0045,0)
9 (0.3922,0.6070,0.0008) (0.0044,0.0042,0.0005) (0.3995,0.6005,0) (0.0021,0.0021,0) (0.3924,0.6076,0) (0.0040,0.0040,0)

11 (0.3320,0.6670,0.0010) (0.0036,0.0028,0.0010) (0.3323,0.6677,0) (0.0037,0.0037,0) (0.3349,0.6751,0) (0.0036,0.0036,0)
14 (0.5411,0.4583,0.0006) (0.0031,0.0034,0.0008) (0.5466,0.4534,0) (0.0049,0.0049,0) (0.5522,0.4478,0) (0.0044,0.0044,0)
17 (0.4502,0.5491,0.0007) (0.0034,0.0038,0.0013) (0.4500,0.5500,0) (0.0074,0.0074,0) (0.4482,0.5518,0) (0.0022,0.0022,0)
20 (0.3914,0.6081,0.0005) (0.0045,0.0039,0.0009) (0.3943,0.6057,0) (0.0025,0.0025,0) (0.3923.0.6067,0) (0.0049,0.0049,0)

II (neutral)

8 (0.3846,0.5970,0.0184) (0.0046,0.0053,0.0052) (0.3951,0.6049,0) (0.0074,0.0047,0) (0.3946,0.6054,0) (0.0053,0.0053,0)
10 (0.3144,0.6655,0.0211) (0.0057,0.0042,0.0061) (0.3282,0.6718,0) (0.0036,0.0036,0) (0.3254,0.6746,0) (0.0036,0.0036,0)
12 (0.5282,0.4251,0.0467) (0.0060,0.0057,0.0020) (0.5594,0.4406,0) (0.0058,0.0058,0) (0.5536,0.4464,0) (0.0048,0.0048,0)
15 (0.4371,0.5391,0.0238) (0.0024,0.0063,0.0048) (0.4453,0.5547,0) (0.0033,0.0033,0) (0.4534,0.5466,0) (0.0048,0.0048,0)

III (negative)

13 (0.4208,0.4362,0.1430) (0.0073,0.0044,0.0064) (0.4220,0.4381,0.1399) (0.0049,0.0059,0.0067) (0.4301,0.4306,0.1393) (0.0051,0.0044,0.0052)
16 (0.3745,0.4887,0.1368) (0.0056,0.0055,0.0067) (0.3824,0.4943,0.1233) (0.0064,0.0078,0.0077) (0.3759,0.4808,0.1333) (0.0059,0.0026,0.0047)
18 (0.3341,0.5609,0.1149) (0.0060,0.0041,0.0059) (0.3421,0.5549,0.1030) (0.0058,0.0047,0.0031) (0.3186,0.5811,0.1003) (0.0043,0.0071,0.0048)
19 (0.2008,0.3801,0.4191) (0.0055,0.0047,0.0069) (0.2084,0.4548,0.3108) (0.0034,0.0035,0.0047) (0.1931,0.5098,0.3071) (0.0043,0.0052,0.0028)
21 (0.2323,0.6414,0.1263) (0.0086,0.0065,0.0082) (0.2096,0.6653,0.1251) (0.0051,0.0040,0.0050) (0.2112,0.6596,0.1292) (0.0067,0.0055,0.0070)
22 (0.2157,0.6639,0.1204) (0.0054,0.0055,0.0062) (0.3307,0.6693,0) (0.0057,0.0057,0) (0.3284,0.6716,0) (0.0022,0.0022,0)

Table 5: Transient equilibrium frequencies of spatial dynamics for each fitness matrix for scenarios 1, 2 and 3. The frequencies per matrix are averaged over 5 runs, the
standard deviations are calculated from 5 runs of the simulation.
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Scenario 4 Scenario 5 Scenario 6
Group # Transient equilibrium Standard Transient equilibrium Standard Transient equilibrium Standard

frequencies deviation frequencies deviation frequencies deviation

(T+, TP , T−) (T+, TP , T−) (T+, TP , T−) (T+, TP , T−) (T+, TP , T−) (T+, TP , T−)

I (positive)

1 (0.5503,0.4497,0) (0.0048,0.0048,0) (0.5466,0.4534,0) (0.0045,0.0045,0) (0.5526,0.4472,0.0001) (0.0050,0.0051,0.0002)
2 (0.5517,0.4483,0) (0.0051,0.0051,0) (0.5494,0.4497,0.0009) (0.0031,0.0027,0.0018) (0.5526,0.4468,0.0006) (0.0025,0.0029,0.0007)
3 (0.5520,0.4480,0) (0.0026,0.0026,0) (0.5463,0.4537,0) (0.0037,0.0038,0.0001) (0.5490,0.4502,0.0008) (0.0040,0.0045,0.0006)
4 (0.4490,0.5510,0) (0.0025,0.0025,0) (0.4521,0.5479,0) (0.0028,0.0028,0) (0.4461,0.5537,0.0002) (0.0052,0.0045,0.0004)
5 (0.4563,0.5437,0) (0.0036,0.0036,0) (0.4525,0.5463,0.0012) (0.0050,0.0045,0.0009) (0.4467,0.5510,0.0013) (0.0046,0.0059,0.0024)
6 (0.4526,0.5474,0) (0.0034,0.0034,0) (0.4519,0.5481,0) (0.0045,0.0045,0) (0.4505,0.5491,0.0004) (0.0062,0.0062,0.0007)
7 (0.4000,0.6000,0) (0.0048,0.0048,0) (0.3970,0.6030,0) (0.0027,0.0027,0) (0.3999,0.6001,0) (0.0053,0.0053,0)
9 (0.4039,0.5961,0) (0.0028,0.0028,0) (0.3958,0.6042,0) (0.0018,0.0018,0) (0.3963,0.6032,0.0005) (0.0055,0.0056,0.0006)

11 (0.3294,0.6706,0) (0.0045,0.0045,0) (0.3282,0.6705,0.0012) (0.0048,0.0035,0.0017) (0.3330,0.6663,0.0008) (0.0038,0.0037,0.0013)
14 (0.5583,0.4417,0) (0.0057,0.0057,0) (0.5478,0.4512,0.0010) (0.0047,0.0041,0.0008) (0.5495,0.4491,0.0014) (0.0036,0.0027,0.0015)
17 (0.4443,0.5457,0) (0.0053,0.0053,0) (0.4527,0.5468,0.0005) (0.0036,0.0033,0.0011) (0.4526,0.5469,0.0005) (0.0032,0.0048,0.0009)
20 (0.3954,0.6046,0) (0.0033,0.0033,0) (0.3972,0.6021,0.0007) (0.0052,0.0058,0.0006) (0.3896,0.6029,0.0012) (0.0047,0.0063,0.0023)

II (neutral)

8 (0.3934,0.6066,0) (0.0027,0.0027,0) (0.3881,0.5961,0.0158) (0.0022,0.0041,0.0048) (0.3884,0.5978,0.0139) (0.0053,0.0069,0.0055)
10 (0.3289,0.6711,0) (0.0058,0.0058,0) (0.3129,0.6699,0.0172) (0.0039,0.0043,0.0022) (0.3119,0.6670,0.0210) (0.0059,0.0064,0.0051)
12 (0.5436,0.4564,0) (0.0063,0.0063,0) (0.5241,0.4311,0.0449) (0.0054,0.0030,0.0051) (0.5316,0.4150,0.0534) (0.0.031,0.0055,0.0028)
15 (0.4420,0.5580,0) (0.0059,0.0059,0) (0.4396,0.5390,0.0215) (0.0037,0.0059,0.0044) (0.4335,0.5406,0.0259) (0.0037,0.0048,0.0059)

III (negative)

13 (0.4204,0.4372,0.1424) (0.0070,0.0061,0.0058) (0.4205,0.4447,0.1348) (0.0062,0.0063,0.0054) (0.4253,0.4254,0.1494) (0.0038,0.0041,0.0041)
16 (0.3798,0.4719,0.1283) (0.0078,0.0034,0.0075) (0.3743,0.4895,0.1362) (0.0031,0.0029,0.0048) (0.3681,0.4932,0.1387) (0.0062,0.0020,0.0055)
18 (0.3239,0.5654,0.1107) (0.0058,0.0101,0.0059) (0.3236,0.5582,0.1181) (0.0041,0.0039,0.0031) (0.3396,0.5520,0.1084) (0.0073,0.0059,0.0066)
19 (0.1022,0.5954,0.3024) (0.0058,0.0049,0.0066) (0.2073,0.3667,0.4260) (0.0069,0.0054,0.0057) (0.2154,0.3840,0.4006) (0.0040,0.0054,0.0049)
21 (0.2188,0.6638,0.1174) (0.0073,0.0059,0.0078) (0.2224,0.6419,0.1357) (0.0061,0.0028,0.0043) (0.2224,0.6534,0.1242) (0.0062,0.0060,0.0056)
22 (0.3378,0.6622,0) (0.0061,0.0061,0) (0.2177,0.6594,0.1228) (0.0049,0.0029,0.0046) (0.2386,0.6300,0.1314) (0.0041,0.0028,0.0037)

Table 6: Transient equilibrium frequencies of spatial dynamics for each fitness matrix for scenarios 4, 5 and 6. The frequencies per matrix are averaged over 5 runs, the
standard deviations are calculated from 5 runs of the simulation.
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Scenario 1 Scenario 4 Scenario 5 Scenario 6

G # Saturated Standard Saturated Standard Saturated Standard Saturated Standard
r equilibrium deviation equilibrium deviation equilibrium equilibrium deviation
o frequencies frequencies frequencies deviation frequencies

u (T+, TP , T−) (T+, TP , T−) (T+, TP , T−) (T+, TP , T−) (T+, TP , T−) (T+, TP , T−) (T+, TP , T−) (T+, TP , T−)
p

I

1 (0.5474,0.4526,0) (0.0028,0.0028,0) - - (0.5511,0.4489,0) (0.0035,0.0035,0) (0.5481,0.4519,0) (0.0048,0.0048,0)
2 (0.5482,0.4518,0) (0.0037,0.0037,0) - - (0.5464,0.4536,0) (0.0023,0.0023,0) (0.5494,0.4506,0) (0.0046,0.0046,0)
3 (0.5469,0.4531,0) (0.0045,0.0045,0) - - (0.5502,0.4498,0) (0.0029,0.0029,0) (0.5517,0.4483,0) (0.0035,0.0035,0)
4 (0.4515,0.5449,0) (0.0038,0.0038,0) - - (0.4509,0.5491,0) (0.0027,0.0027,0) (0.4502,0.5498,0) (0.0014,0.0014,0)
5 (0.4505,0.5495,0) (0.0032,0.0032,0) - - (0.4511,0.5489,0) (0.0038,0.0038,0) (0.4457,0.5543,0) (0.0024,0.0024,0)
6 (0.4512,0.5488,0) (0.0041,0.0041,0) - - (0.4524,0.5476,0) (0.0039,0.0039,0) (0.4497,0.5503,0) (0.0017,0.0017,0)
7 (0.3987,0.6013,0) (0.0036,0.0036,0) - - (0.3964,0.6036,0) (0.0008,0.0008,0) (0.3952,0.6048,0) (0.0038,0.0038,0)
9 (0.3992,0.6018,0) (0.0024,0.0024,0) - - (0.4000,0.6000,0) (0.0009,0.0009,0) (0.3977,0.6023,0) (0.0028,0.0028,0)

11 (0.3287,0.6713,0) (0.0019,0.0019,0) - - (0.3290,0.6710,0) (0.0034,0.0034,0) (0.3273,0.6727,0) (0.0037,0.0037,0)
14 (0.5482,0.4510,0) (0.0019,0.0019,0) - - (0.5456,0.4544,0) (0.0050,0.0050,0) (0.5451,0.4549,0) (0.0061,0.0061,0)
17 (0.4561,0.5439,0) (0.0039,0.0039,0) - - (0.4521,0.5479,0) (0.0037,0.0037,0) (0.4530,0.5470,0) (0.0057,0.0057,0)
20 (0.3991,0.6009,0) (0.0014,0.0014,0) - - (0.3972,0.6028,0) (0.0046,0.0046,0) (0.4006,0.5994,0) (0.0018,0.0018,0)

II

8 (0.3916,0.6059,0.0025) (0.0039,0.0033,0.0010) - - (0.3925,0.6045,0.0030) (0.0042,0.0039,0.0044) (0.4006,0.5994,0) (0.0042,0.0042,0)
10 (0.3280,0.6691,0.0029) (0.0023,0.0024,0.0008) (0.3318,0.6682,0) (0.0020,0.0020,0) (0.3270,0.6688,0.0048) (0.0046,0.0039,0.0033) (0.3280,0.6720,0) (0.0031,0.0031,0)
12 (0.5419,0.4531,0.0050) (0.0032,0.0034,0.0009) - - (0.5470,0.4489,0.0041) (0.0034,0.0041,0.0032) (0.5526,0.4474,0) (0.0044,0.0044,0)
15 (0.4494,0.5453,0.0053) (0.0017,0.0016,0.0008) - - (0.4490,0.5454,0.0056) (0.0029,0.0020,0.0036) (0.4527,0.5473,0) (0.0026,0.0026,0)

III

13 (0.3324,0.3368,0.3308) (0.0035,0.0027,0.0016) (0.5543,0.4457,0) (0.0021,0.0021,0) (0.3327,0.3366,0.3307) (0.0028,0.0031,0.0021) (0.3263,0.3401,0.3336) (0.0056,0.0038,0.0063)
16 (0.2506,0.4123,0.3371) (0.0015,0.0018,0.0013) (0,0.3961,0.6039) (0,0.0037,0.0037) (0.2513,0.4109,0.3378) (0.0051,0.0052,0.0057) (0.2070,0.4004,0.3927) (0.0059,0.0066,0.0071)
18 (0.2518,0.5151,0.2327) (0.0039,0.0030,0.0037) (0.4011,0.5989,0) (0.0033,0.0033,0) (0.2446,0.5203,0.2351) (0.0046,0.0058,0.0035) (0.2557,0.5363,0.2080) (0.0058,0.0060,0.0052)
19 (0.1342,0.3638,0.5021) (0.0029,0.0039,0.0042) (0,0.4049,0.5951) (0,0.0031,0.0031) (0.1301,0.3663,0.5036) (0.0049,0.0037,0.0059) (0.0097,0.3915,0.5988) (0.0046,0.0022,0.0031)
21 (0.1525,0.6020,0.2455) (0.0035,0.0036,0.0042) (0.3275,0.6725,0) (0.0059,0.0059,0) (0.1537,0.5988,0.2475) (0.0044,0.0039,0.0038) (0.1579,0.6393,0.2028) (0.0057,0.0043,0.0061)
22 (0.2218,0.6469,0.1313) (0.0031,0.0028,0.0032) (0.3294,0.6706,0) (0.0023,0.0023,0) (0.2203,0.6612,0.1184) (0.0044,0.0048,0.0052) (0.2745,0.6752,0.0503) (0.0020,0.0028,0.0048)

Table 7: Saturated equilibrium frequencies for each matrix for scenarios 1, 4, 5, and 6. The frequencies are averaged over 5 runs, the corresponding standard deviation is
calculated as well. For scenarios 2 and 3 we do not obtain saturated spatial equilibria, as all living cells go extinct once the space is filled.
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Appendix D: Exploring the effects of zero diagonal in the spatial game815

Here, we explore the consequences of having 0’s along the diagonal of our matrix model. To
do so we added 0.2 to all elements of payoff matrix A. We shall refer to this matrix with increased
elements as the enhanced matrix as opposed to the original matrix. By adding a constant amount
to each element, the non-spatial ESSs remain the same (Table 2).

We focused on Scenario 1 (mortality regime: 5 % stochastic death rate and removal of dead820

cells after 5 generations). We examined three representative matrices, enhanced matrices #7, #8
and #22 from groups I, II and III, respectively, under all combinations of the three frequency-
dependence radii (= 1, 10, 50), the three density-dependence radii (= 1, 10, 50), and the three
dispersal radii (= 1, 10, 50). In total there are 21 matrix and parameter combinations. We ran
simulations for 2000 generations and ran five replicates for each parameter combination. The825

five replicates exhibited very small standard deviations in terms of equilibrium frequencies and
variance-to-mean ratios of cell types. The following tables show the average outcome for each
enhanced matrix.

In terms of conclusions, there were no qualitative differences between the results from the
enhanced and original matrices (Tables 9, 13, 14 and 15 and Figures 15 and 16). When the830

dispersal, frequency-dependence and density-dependence radii are small, the enhanced matrices
produce greater within cell-type clumping (higher variance-to-mean ratios). This is to be ex-
pected. When the density-dependence limit permits, a cell that interacts with its own type now
has some probability of proliferating which adds another like-type cell to the clump. When the
enhanced matrix has no T− at the non-spatial ESS, both the enhanced and original matrices for835

the spatial game result in the ESS frequencies of T+ and TP cells. When the non-spatial ESS
has a very small frequency of T−, the resulting spatial game (for enhanced matrix) results in
a near absence of T−. When the non-spatial ESS has a sizable frequency of T−, the resulting
spatial game (for enhanced matrix) stabilizes on frequencies of T− that are below the non-spatial
ESS. However, the discrepancy between T− in the spatial game (for enhanced matrix) and the840

non-spatial game becomes smaller.
In exploring the consequences of increasing either the frequency-dependence, dispersal, or

density-dependence radii in the spatial games, the games with enhanced matrices yield higher
variance-to-mean ratios for the increased frequency-dependence radii (Tables 10 and 13), but
there is little change when the other 2 radii are increased as well (Tables 11, 14, 12 and 15). When845

increasing these particular radii, the resulting spatial equilibrium frequencies of the original and
enhanced matrices are almost identical. Visually, there is no difference regarding the dispersion
of cells when the density-dependence radius is 10 or 50, in comparison to the original matrices.
For both, a density-dependence radius of 10 still yields numerous small clumps of cells across
the space (Figure 15) and a radius of 50 yields a single large cluster in the middle of the space850

(Figure 16).

# ESS Saturated equilibrium frequencies Variance-to-mean ratio
(T+,TP ,T−) (T+,TP ,T−) (T+,TP ,T−)

7 (0.4000, 0.6000, 0) (0.3979, 0.6021, 0) (2.2267, 1.5470, -)
8 (0.3659, 0.5659, 0.0682) (0.3752, 0.6133, 0.0115) (2.1368, 1.3431, 10.2605)
22 (0.2016, 0.6285, 0.1699) (0.2214, 0.6217, 0.1569) (5.0451, 1.4141, 6.7156)

Table 8: The frequencies and variance-to-mean ratios achieved at the saturated spatial equilibrium for the enhanced
matrices, when dispersal, frequency-dependence and density-dependence radii are all equal to 1. The standard
deviation of spatial equilibrium frequencies and variance-to-mean ratios over 5 runs are reported in Table 9. Table 4
shows saturated equilibrium frequencies and variance-to-mean ratios of the original matrices.
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# Std of spatial equilibrium frequencies Std of variance-to-mean ratio
(T+,TP ,T−) (T+,TP ,T−)

7 (0.0031,0.0031,0) (0.0223,0.0291,0)
8 (0.0044,0.0037,0.0013) (0.0300,0.0158,0.0397)
22 (0.0042,0.0034,0.0029) (0.0413,0.0207,0.0138)

Table 9: The standard deviation of spatial equilibrium frequencies and variance-to-mean ratios over 5 runs

# ESS Saturated equilibrium frequencies Variance-to-mean ratio
(T+,TP ,T−) (T+,TP ,T−) (T+,TP ,T−)

7 (0.4000, 0.6000, 0) (0.3970, 0.6030,0) (17.9747,15.2977,0)
8 (0.3659, 0.5659, 0.0682) (0.3757,0.5686,0.0557) (16.0118,11.0791,18.6105)
22 (0.2016, 0.6285, 0.1699) (0.2138,0.6231,0.1631) (11.0032,7.1923,13.8021)

Table 10: The frequencies and variance-to-mean ratios achieved at the saturated spatial equilibrium for enhanced
matrices, when the dispersal and density-dependence radii are both set to 1, while the frequency-dependence
radius is 10. The standard deviations of the equilibrium frequencies and variance-to-mean ratios are very small
and comparable to those in Table 9. For comparison, Figure 7 shows the saturated equilibrium frequencies and
variance-to-mean ratios of the original matrices.

# ESS Saturated equilibrium frequencies Variance-to-mean ratio
(T+,TP ,T−) (T+,TP ,T−) (T+,TP ,T−)

7 (0.4000, 0.6000, 0) (0.3966,0.6034,0) (2.6659,3.7850,-)
8 (0.3659, 0.5659, 0.0682) (0.3682,0.5603,0.0715) (2.5072,3.5029,2.9234)
22 (0.2016, 0.6285, 0.1699) (0.2003,0.6309,0.1688) (2.1402,3.5098,1.9857)

Table 11: The frequencies and variance-to-mean ratios achieved at the saturated spatial equilibrium for enhanced
matrices, when the frequency-dependence and density-dependence radii are set to 1, while the dispersal radius is 10.
The standard deviations of the equilibrium frequencies and variance-to-mean ratios are very small and comparable
to those in Table 9. For comparison, Figure 8 shows the saturated equilibrium frequencies and variance-to-mean
ratios of the original matrices.

# ESS Saturated equilibrium frequencies Variance-to-mean ratio
(T+,TP ,T−) (T+,TP ,T−) (T+,TP ,T−)

7 (0.4000, 0.6000, 0) (0.3970,0.6030,0) (59.2311,41.9001,-)
8 (0.3659, 0.5659, 0.0682) (0.3468,0.6131,0.0401) (40.7464,39.8969,51.0012)
22 (0.2016, 0.6285, 0.1699) (0.1898,0.6902,0.1201) (20.9789,21.1066,28.6123)

Table 12: The frequencies and variance-to-mean ratios achieved at the saturated spatial equilibrium for enhanced
matrices, when the frequency-dependence and dispersal radii are set to 1, while the density-dependence radius is 10.
The standard deviations of the equilibrium frequencies and variance-to-mean ratios are very small and comparable
to those in Table 9. For comparison, Figure 9 shows the saturated equilibrium frequencies and variance-to-mean
ratios of the original matrices.

# ESS Saturated equilibrium frequencies Variance-to-mean ratio
(T+,TP ,T−) (T+,TP ,T−) (T+,TP ,T−)

7 (0.4000, 0.6000, 0) (0.4015, 0.5985, 0) (27.3108, 21.9151, -)
8 (0.3659, 0.5659, 0.0682) (0.3648, 0.5653, 0.0700) (26.7213, 24.5489, 28.6670)
22 (0.2016, 0.6285, 0.1699) (0.2012, 0.6300, 0.1688) (33.3553, 13.5125, 23.4429)

Table 13: The frequencies and variance-to-mean ratios achieved at the saturated spatial equilibrium for enhanced
matrices, when the dispersal and density-dependence radii are set to 1, while the frequency-dependence radius is 50.
The standard deviations of the equilibrium frequencies and variance-to-mean ratios are very small and comparable
to those in Table 9. For comparison, Figure 7 shows the saturated equilibrium frequencies and variance-to-mean
ratios of the original matrices.
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# ESS Saturated equilibrium frequencies Variance-to-mean ratio
(T+,TP ,T−) (T+,TP ,T−) (T+,TP ,T−)

7 (0.4000, 0.6000, 0) (0.4014, 0.5986, 0) (1.0855, 1.0912, -)
8 (0.3659, 0.5659, 0.0682) (0.3642, 0.5667, 0.0691) (1.1300, 1.0619, 1.0503)
22 (0.2016, 0.6285, 0.1699) (0.1990, 0.6304, 0.1706) (0.9689, 1.1189, 0.9624)

Table 14: The frequencies and variance-to-mean ratios achieved at the spatial equilibrium for enhanced matrices,
when the frequency-dependence and density-dependence radii are set to 1, while the dispersal radius is 50. The
standard deviations of the equilibrium frequencies and variance-to-mean ratios are very small and comparable to
those in Table 9. For comparison, Figure 8 shows the saturated equilibrium frequencies and variance-to-mean
ratios of the original matrices.

# ESS Saturated equilibrium frequencies Variance-to-mean ratio
(T+,TP ,T−) (T+,TP ,T−) (T+,TP ,T−)

7 (0.4000, 0.6000, 0) (0.4005, 0.5995, 0) (1.1327, 1.0842, -)
8 (0.3659, 0.5659, 0.0682) (0.3686, 0.5669, 0.0644) (1.0648, 0.9689, 1.0774)
22 (0.2016, 0.6285, 0.1699) (0.1979, 0.6312, 0.1709) (1.0221, 1.1004, 1.0951 )

Table 15: The frequencies and variance-to-mean ratios at saturated equilibria for enhanced matrices, when the
frequency-dependence and dispersal radii are set to 1, while the density-dependence radius is 50. The standard
deviations of the equilibrium frequencies and variance-to-mean ratios are very small and comparable to those in
Table 9. For comparison, Figure 9 shows the saturated equilibrium frequencies and variance-to-mean ratios of the
original matrices.

(a) (b) (c)

Figure 15: Snapshots of the field at saturated equilibria for enhanced matrices (a) #7, (b) #8 and (c) #22, when
the density-dependence radius is set to 10.
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Figure 16: Simulated tumors for enhanced matrices resulting from setting either the frequency-dependence, dis-
persal, or density-dependence radius to the highest level (shown as the rows) while holding the other two at 1. The
columns represent different payoff matrices, and the simulations were run for 2000 generations insuring a saturated
equilibrium.

34


	Introduction
	Models: Replicator dynamics and its spatial variant
	Background: Metastatic castrate-resistant prostate cancer
	Model basics
	Replicator dynamics in metastatic castrate-resistant prostate cancer
	Spatial replicator dynamics in metastatic castrate-resistant prostate cancer

	Tumor growth and composition
	The effects of the mortality regime on tumor growth
	Spatial vs. non-spatial dynamics

	Effects of the frequency-dependence radius, the dispersal radius and the density-dependence radius on spatial equilibria
	Effect of the frequency-dependence radius
	Effect of the dispersal radius
	Effect of the density-dependence radius

	Concluding remarks

