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Game theoretic models of evolution such as the Hawk-Dove game assume that individuals gain fitness
(which is a proxy of the per capita population growth rate) in pair-wise contests only. These models as-
sume that the equilibrium distribution of phenotypes involved (e.g., Hawks and Doves) in the population
is given by the Hardy-Weinberg law, which is based on instantaneous, random pair formation. On the
other hand, models of population dynamics do not consider pairs, newborns are produced by singles,
and interactions between phenotypes or species are described by the mass action principle. This arti-
cle links game theoretic and population approaches. It shows that combining distribution dynamics with
population dynamics can lead to stable coexistence of Hawk and Dove population numbers in models
that do not assume a priori that fitness is negative density dependent. Our analysis shows clearly that
the interior Nash equilibrium of the Hawk and Dove model depends both on population size and on
interaction times between different phenotypes in the population. This raises the question of the appli-
cability of classic evolutionary game theory that requires all interactions take the same amount of time
and that all single individuals have the same payoff per unit of time, to real populations. Furthermore,
by separating individual fitness into birth and death effects on singles and pairs, it is shown that stable
coexistence in these models depends on the time-scale of the distribution dynamics relative to the popu-
lation dynamics. When explicit density-dependent fitness is included through competition over a limited
resource, the combined dynamics of the Hawk-Dove model often lead to Dove extinction no matter how
costly fighting is for Hawk pairs.
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1. Introduction

Game theoretic models (e.g., the Hawk-Dove game;
Maynard Smith and Price, 1973) assume that all individuals
instantaneously and randomly pair, and each interaction has the
same duration. These assumptions lead to the distribution of
pairs that is given by the Hardy-Weinberg (HW) principle (see,
for example, Eq. (2) below). Kfivan and Cressman (2017) (see
also Zhang et al, 2016) considered a more general situation
where interaction times between different strategies can take
different amounts of time. They assumed that all individuals pair
immediately so there were no singles.
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In this article, we do not assume instantaneous pairing, but
consider random pair formation among singles based on the mass
action principle instead. Thus, the population consists both of sin-
gle individuals and paired individuals and we study distributional
dynamics of pairs and singles assuming that the overall population
numbers of each strategy are fixed. Together with distributional
dynamics we also consider population dynamics that model how
the numbers of each strategy evolve in two-strategy games.

In Section 2, we start with the replicator equation (Taylor and
Jonker, 1978) that has often been used in the context of evolution-
ary modeling. Replicator dynamics assume that a strategy’s growth
rate is given by its average payoff (fitness). The standard approach
also assumes that individuals meet at random (which implicitly
means that all interaction times must be the same) and that payoff
is density independent since it is given by this pairwise interac-
tion. The replicator equation for two-strategy games then predicts
that the frequencies of strategies in the population will converge
to an evolutionarily stable strategy (ESS) of the game and that the
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overall population will grow (or decay) exponentially thereafter
(Cressman, 2003; Hofbauer and Sigmund, 1998). These two proper-
ties are captured by saying that replicator dynamics are frequency
dependent but density independent. Section 2 generalizes the stan-
dard replicator equation to the case where interaction times de-
pend on strategies and singles get some (density independent) fit-
nesses too. We show that the replicator equation can now lead to
stable equilibria at finite, positive population size. We document
evolutionary outcomes where both strategies coexist at the equi-
librium using generalizations of the Hawk-Dove model and distri-
butional dynamics that evolve on a faster time scale compared to
the replicator equation. In other words, it is no longer necessary to
assume a priori density dependent fitnesses to obtain coexistence.

Section 3 considers the effect on the stable evolutionary out-
come when distributional and population dynamics operate on a
commensurable time scale. To do so, the combined dynamics must
model how payoffs translate into changing numbers of singles and
pairs. Specifically, we assume that payoffs to singles only influence
the number of singles whereas payoffs to pairwise interactions are
interpreted in terms of birth and death rates of the individuals
in the pair and any newborns increase the number of singles. It
is shown that non-zero death rates when in pairs alter the sta-
ble evolutionary outcome in the combined dynamics. In fact, for
our generalized Hawk-Dove game, we find that the stable coexis-
tence equilibrium when distributional dynamics are fast can disap-
pear altogether when time scales are similar and, in such cases the
Doves go extinct.

Combining distributional and evolutionary dynamics suggests a
natural way to extend the Hawk-Dove game to a model of com-
petition over a limited resource. Section 4 develops such a model
where the resource is a fixed number of breeding sites that are
available to be occupied either by singles or by interacting pairs
and any other singles are searching for sites. Fitnesses are now
automatically density dependent. Although the state space of the
resulting dynamical system becomes quite large in this complex
model, we show that the underlying density dependence drives
Doves to extinction when reasonable assumptions on the system
parameters are made.

Through the models of Sections 2-4, we show how implicit and
explicit density dependence arises naturally when population and
evolutionary models are integrated. The Discussion (Section 5) ex-
pands further on this theme by emphasizing how the Hawk-Dove
game, originally developed to model the frequency evolution of ag-
gressive behavior in a biological species, can serve to understand
the effects of competition on the combined evolutionary and pop-
ulation outcome.

2. Evolutionary games when distribution dynamics are
independent of fitness

In this section, we generalize the replicator dynamics to the
case where interaction times between strategies are not the same
and there is time needed for pair formation.

2.1. Distributional dynamics, fitness, and Nash equilibrium

In what follows we consider symmetric, two-strategy games
with strategies denoted as H and D (motivated by, but not limited
to, the Hawk-Dove model that we use throughout this article) and
payoff matrix

H D
H (mwyy  7hp (1)
D \ mpy 7pp )’
These payoffs to the row player result from pairwise interactions
between players. Classic evolutionary game theory interprets the

payoffs as changes in individual fitnesses due to an interaction. To
calculate fitness, one then needs to describe the distribution of in-
teracting pairs in the population.

The classic approach assumes that individuals immediately and
randomly pair. The equilibrium of the pair formation process is
then given by Hardy-Weinberg distribution

H? HD D? )
nHHzms nHDZWv ”DD=m (2)
where n;; is the number of ij pairs (i, j = H, D), H = 2nyy + nyp,
and D = 2npp + nyp, where H is the number of Hawks, D is the
number of Doves, and N = H + D is the population size.! In mixed
pairs, we do not distinguish between HD and DH pairs, i.e., nyp
consists of all mixed pairs. Assuming that the distribution of pairs
is at its Hardy-Weinberg equilibrium, the expected payoffs per in-
teraction to a Hawk and to a Dove are

2n n H
Iy = #ﬂHH‘F%”HD: N”HH-FNT[HD, @)
I1 _nﬂn— +2nﬂn —Hﬂ +2]~[
D=~ TTbH D tbp = §7toH + N 7TDD:

Underlying the Hardy-Weinberg distribution and the resulting ex-
pected payoffs given in (3) is an assumption that interactions take
the same amount of time in order that all individuals are available
to randomly pair (see the pair formation dynamics (7) below when
individuals instantaneously pair). Although the effect of interaction
time is not generally included in classic evolutionary game theory
models, it is important for us here since we will relax the assump-
tion that all interactions take the same amount of time for the re-
mainder of this article.

Following Kfivan and Cressman (2017), we introduce the (sym-
metric) interaction time matrix

H D

H (tun Tup
D (THD TDD) “)
where 7 is the average interaction time an ij pair takes (with all
T's positive). Furthermore, contrary to classic evolutionary game
theory, we will not assume that all individuals instantaneously
pair, i.e.,, we consider singles in the population. The problem of
finding the distributional equilibrium of pairs and singles is then
much more complex when compared to the Hardy-Weinberg dis-
tribution (2).

Let ny and np denote the numbers of singles in the population.
Consider the distributional dynamics of pairs and singles

dstH = - —anﬂD+2% + %

dstD -} —AanD+2% + ZHLZ
ot :
dg:m _ _% + Angnp
dnop _ Moo , %

dt oo 2

that leaves the number of Hawks and Doves unchanged. These dy-
namics model a pair formation process (see also Mylius, 1999) that

T Note that H (respectively D) is used to denote the Hawk (respectively, Dove)
strategy as well as the number of Hawks (respectively, Doves). The meaning will be
clear from the context in which it appears.
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is based on the mass action law whereby single individuals meet
at random with encounter (or pairing) rate A. The 2’s and 1/2’s
in these equations relate to the fact that two single individuals
appear when a pair disbands and that two singles produce one
pair when they meet, respectively. Appendix A shows that, given H
and D, there exists a unique distributional equilibrium of (5). This
distributional equilibrium can be obtained using computer algebra
software (Appendix F), but it is too complicated for analysis. We
observe that at the distributional equilibrium we have a general-
ized Hardy-Weinberg distribution

1 1
2 2
NHy = ZAIHHHH, Nyp = ATypNuNp, Npp = 2)‘-TDD”D- (6)

If individuals instantaneously pair (i.e.,, A converges to infinity
in distributional dynamics (5)), the pair dynamics are described by
Kfivan and Cressman (2017)

R A STy
dnup _ o (T + ) (5 + F2) (7)
d = T a( e )
Nup 2npp \ 2
dnpp _ mpp  (HR+E2)
de = o (1)

Provided all 7’s are the same, the above pair dynamics converge to
the Hardy-Weinberg distributional equilibrium (2).

We define individual fitness as average payoff per unit of time.
Assuming that singles gain payoff my and 7p (these payoffs can
be positive, negative, or zero) per unit of time, while individual i
in pair ij gains payoff 7; per interaction when the pair disbands
(and so payoff 7/t per unit of time), the fitnesses for the two
phenotypes are now

2Nyy Ty | Npp Tap | Ny
My = HH D CHD g Moy,
H THH H THD H

(8)
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b D Tpp D THD D

We now analyze the game that consists of the Hawk and Dove
strategies together with their fitnesses (8) evaluated at the unique
equilibrium distribution of (5). Substituting equilibrium distribu-
tion of pairs (6) in the equation for an interior Nash equilibrium
(NE) Iy =IIp and into the total population size N =ny+np +
2nyy + 2nyp + 2npp leads to the following system of equations

NpATTpp + NHATpH + Tp
NpATpp + NyATyp + 1

TlH)\.JTHH + TID)\JTHD —+ Ty .
NyATHy + NpAThp + 1

and

(9)

nH(nHATHH + nD)\,'L'HD + 1) + TlD(TlD)\.TDD + nHATHD + 1) =N.
(10)

Egs. (9) and (10) are difficult to solve analytically as these are two
quadratic equations in ny and np.

However, when all 7’s are the same and equal to t, there is at
most one interior NE and it is given by

_ (JTDD —7THD)(\/4)\,NT +1- 1) +2T(7TD —JTH)

ny
2AT(7Tpp — pH — THD + TTHH)

and

b= (ﬂHH —YTDH)(\/4}\,NT +1- 1) +2T(7TH —JTD)

2AT(7Tpp — pH — THD + TTHH)

when both these expressions are positive. In this case, the propor-
tion of Hawks in the population at NE is given by

(7tp — 7)) (VAANT + 1+ 1)
2AN(7Tpp — TTpy — Typ + THH)
(11)

H TTpp — TTHD
N 7pp — TTpy — Tup + TTHl

Pu =

In particular, the NE depends on population size when there are
payoffs to singles. This contrasts with the classic result of evolu-
tionary game theory whereby the strategy proportion at NE de-
pends only on the payoff matrix and not on N. On the other hand,
in the special case where the payoff to singles for both strate-
gies are the same (i.e, my = mp),> we recover the classic result
(Hofbauer and Sigmund, 1998) of matrix game theory with two
strategies and equal interaction times where the NE proportion of
Hawks is

_ TTpp — TTHD
Tpp — TTpH — TTHp + TTHH

DPH

In the following example, our analysis of the Hawk-Dove model
with standard payoff matrix shows clearly that, in general, interior
NE depend both on population size and on interaction times. This
raises the question of the applicability of classic evolutionary game
theory to real populations. In particular, the classic results require
that all interactions take the same amount of time and that all sin-
gle individuals have the same payoff per unit of time.

Example 1. The Hawk-Dove model (e.g., Kfivan and Cressman,
2017; Maynard Smith and Price, 1973) has payoff matrix

H D
H(V-C 2V
D ( 0o v ) (12)
where 2V > 0 is the benefit of winning the contest (this can be in-
terpreted as, e.g., the value of the contested resource) and C> 0 is
the individual cost of the fight that each contestant bears (i.e., the
total cost for both individuals is 2C). When two Hawks interact, the
average payoff is thus (2V — 2C)/2. If singles payoffs are the same
(ry = mp) so that differences in payoffs are through pairwise inter-
actions only and all interactions take the same time, then for C>V
from formula (11) we get the NE py = V/C, which is independent
of N. This is the unique evolutionarily stable strategy (ESS) of the
classic matrix game (12) (Fig. 1A). When C<V, all Hawks is the
only NE (it is also an ESS).

If all interactions take the same time 7 and 7y # p, then the
proportion of Hawks (11) at an interior NE is given by

14 3 (mp — 7)) (WAANT +1+1)
C 2CAN

and is no longer independent of population size N. The depen-
dence of py on A and N is illustrated in Fig. 1, left panels. When
total population N tends to infinity, the proportion of Hawks con-
verges to V/C as in the classical case. When mp >y, we see from
(13) that py decreases with smaller A and N (Fig. 1, panels A, C,
E, G) and larger . On the other hand, when 7p <y, we observe
the opposite effect as seen in Fig. 1, Panel L

When interaction times are not all the same, interior NE can
be approximated by numerically solving Egs. (9) and (10). The pro-
portion of Hawks at NE are shown in the right panels of Fig. 1 as
a function of tyy when all other interaction times are 1. The top

Py = (13)

2 These equal payoffs to singles can be considered a type of strategy-independent
background fitness (Cressman, 1992) that does not affect the evolutionary outcome
since it is selectively neutral. From this perspective, my#mp is a form of hetero-
geneity in background fitness (see also Hauser et al., 2014) that alters the evolu-
tionary outcome to (11).
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Fig. 1. The proportion of Hawks (py) at the NE for the Hawk-Dove game parametrized by (12) as a function of population size N (left panels) and of interaction time between
Hawks tyy (right panels). Stable (unstable) NE are indicated by solid (dashed) curves. The left panels assume that all interaction times are the same (in particular, tyy = 1)
and in the right panels the constant total population size is N = 100. The top row assumes very fast pairing rate (A = 10, 000), the second and fifth rows intermediate pairing
rate (A = 1), and the third and fourth row low and very low pairing rates (A = 0.1 and A = 0.007, respectively). Since there are effectively no singles in the top row, the left
panel gives the NE of the classic Hawk-Dove game with payoff matrix (12) and the right panel reproduces Fig. 3B in Kfivan and Cressman (2017). The top three panels on
the left (A, C, E) assume different singles payoff (ry = —1, mp = —0.5) whereas the top three panels on the right (B, D, F) assume equal singles payoff (wy = -1, mp = —1).
Panels G and H assume 7y = —1 and 7p = —0.5 as in A, C, E whereas panels I and ] assume my = —0.5, mp = —2. Other parameters used in simulations: typ =1, Tpp =1,
V=1,C=2.
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Fig. 2. Simulations of Hawk and Dove population dynamics (16). Left panels correspond to Example 1 (;y = 1p = —1) and right panels to Example 2 (wy = 1p = 1). Top row
shows stream plot of singles population dynamics (18). The middle row shows frequency of Hawks (py), frequency of single individuals (ps) and frequency of individuals that
are in pairs (pp) in the population as a function of time. The bottom row shows the total population size as a function of time. Panels C and E show two trajectories. Along
one (black lines) the population grows to infinity, while along the other (gray) it declines to extinction. Other parameters: tyy =1, typ=1, opp=1, A =1,V =1, C=2.
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Fig. 3. Dependence on single Dove payoff 7, of the interior equilibrium (24) for Example 2, which exists for 7 > (V/C)rr . Panel A shows frequency of Hawks (py), frequency
of single individuals (ps) and frequency of individuals that are in pairs (pp) while panel B shows the total population size at the equilibrium. Other parameters are the same
as those in Fig. 2, right panels (i.e., tyy =1, typ=1, op=1, A =1,V =1,C=2, iy =1).
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row of Fig. 1 shows the case where individuals pair almost in-
stantaneously, because pairing rate A is high. In this case, there
are practically no singles and distributional dynamics converge to
(7). Panel B then corresponds with Fig. 3B in Kfivan and Cress-
man (2017) where instantaneous pairing was assumed. When pair-
ing is not instantaneous and singles payoffs are negative but un-
equal (right panels D, F, H, ]), it can be shown for the Hawk-Dove
payoffs (12) that there is a finite threshold value such that the all
Hawk population is a NE if and only if fighting time tyy is above
this threshold. Moreover, panels D and ] with intermediate pair-
ing rate (A = 1) document the existence of two interior NE when
Tyy is sufficiently large. In this case, one interior NE is stable (in-
dicated by a solid curve) since Iy — I1p is positive (negative) just
below (above) the curve and the other is unstable (indicated by
a dashed curve). In both panels, all Hawks is then a NE as well
since 1y >TIIp when py = 1. Panel F assumes yet lower pairing
rate and we observe complex dependence of NEs on interaction
times between two Hawks. In particular, it shows that for short
interaction times between Hawks, the proportion of Hawks is be-
low V/C = 1/2. As this interaction time increases, the proportion of
Hawks increases too, and a second NE where initially all individu-
als are Hawks appears. For intermediate interaction times between
Hawks (approx. 4.9 < tyy <9.6), the only NE is all Hawks. For yet
higher interaction times, there are again two interior NE, and the
stable lower one decreases with increasing interaction time. Fi-
nally, for extremely low pairing rate and 7 p >y (panels G and
H), the all Dove population is a NE independent of fighting time
when population size is small enough since almost all individuals
are singles.

2.2. Replicator and population dynamics

The replicator equation of evolutionary game theory is based
on a population dynamics that assumes the per capita population
growth rate of a strategy’s numbers is proportional to its payoff

where TT = pyIly + ppllp is the average fitness in the popula-
tion. Since Iy = pymyy + pp7yp and Ilp = pympy + pprrpp Where
pp =1— py, the proportion of Hawks evolves according to the
replicator equation of classic evolutionary game theory which is in-
dependent of total population size. It is well-known (Hofbauer and
Sigmund, 1998) that every trajectory of the replicator equation
for a two-strategy game evolves to an equilibrium.> Depending on
whether the average fitness IT in the population is positive or neg-
ative at this equilibrium, the population size will then either grow
(in which case the extinction equilibrium (H, D) = (0, 0) is unsta-
ble) or decay (the extinction equilibrium is then stable) exponen-
tially and so no positive equilibrium population size exists. Such
population dynamics are called density independent.

In the remainder of this section, we generalize the population
dynamics approach to evolutionary games where the classic as-
sumptions do not hold. We continue to assume that distributional
dynamics (5) operate on a fast time scale so that, in the population
dynamics (14), the population distribution tracks instantaneously
the unique equilibrium distribution of (5) at current Hawk and
Dove numbers.* From (6) and (8), population dynamics (14) sim-
plify to

dH
a = (TyHAny + TupAnp + )Ny

16
dD (16)
a (7wprAny + wppAnp + 7p)np,

which can be analyzed by rewriting it as a dynamics in ny and np
alone. Specifically, using generalized Hardy-Weinberg distribution
(6), Hawk and Dove population size at the distributional equilib-
rium are

H = 2npy + npp + np = ng(MyA Ty + NpATap + 1),

(17)
D = 2npp + nup + np = np(NpATpp + NpAtyp + 1).
Calculating derivatives of H and D in (17) and substituting them
into (16) leads to”

dny 1 npA (7Tp + NpAtpp + Ny ATy ) Thp — (T + NpATtyp + NpAyy) (14 2npATpp + A THp)
H

F nDnsz‘L’,_z,D — (l + an}\'TDD + nHk‘EHD)(l + nD)\,THD + 2nH)\,THH)

(18)

dnp " nuA (7Y 4+ NyATTyy 4+ NpATtyp) Tup — (7Tp + NATtpy + NpAstpp) (1 + 2nyATyy + NpATyp)

de TP

(Taylor and Jonker, 1978). In particular, unlike Section 2.1, total
population size N can change. Under the implicit assumptions of
classical evolutionary game theory that all interactions take one
unit of time and that individuals instantaneously pair at Hardy-
Weinberg distribution (2), the replicator equation is independent
of N as we will now see. First, the population dynamics becomes

dH
@~ H
(14)
dD
@ D

where the per capita population growth rate is equal to fitness.
Moreover, by the second assumption, fitnesses are given by (3) and
so population dynamics (14) can be rewritten in terms of the pro-
portion py = H/(H+ D) of Hawks and the total population size
N=H+D as

dpu

SH = pu(1 = pu) (Tl — o)

AN
S =TIV (15)

nDnHAZII?,D - (1 + 2npATpp + nHATHD)(l + NpATyp + 2nH)\,THH)

In contrast to (14), population dynamics (18) also have non-trivial
equilibria. Here we provide conditions (proven in Appendix B) for
their local asymptotic stability.

The extinction equilibrium (ny,np) = (0,0) is locally stable
when 7y <0 and mp <0. This can be understood intuitively by
Fig. 2, where panels C and E (gray lines) show that, as the to-
tal population size decreases toward 0, the frequency of singles
(ps = (ny +np)/N) in the population increases toward 1. For low
population size, individual fitness is then essentially given by the
singles payoff, which then determine population dynamics and
hence the fate of the population. Thus, when payoffs of singles are
negative, the population will go extinct. Fig. 2C also shows that
the frequency of Hawks (py) in the population does not tend to
V/C even in the case that single Hawks and Doves have the same
payoff (i.e., my = mp) and all t’s are equal (see the gray solid line

3 This equilibrium is a NE of the game (and, generically, an ESS) if initially there
are both Hawks and Doves present.

4 See, however, Section 3, where this assumption is relaxed.

5 We note that rewriting these dynamics in analogy to (15) where we separated
frequency dynamics from population dynamics is cumbersome now, because the
analytic expression for the equilibrium of (5) as a function of Hawk and Dove pop-
ulation numbers is a very complex formula (it can be calculated in Mathematica).
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in panel C). In fact, the limiting proportion of Hawks depends on
the initial conditions that determine the angle with which the cor-
responding trajectory tends to the origin in Fig. 2, panel A.

The black lines of Fig. 2, panels C and E, show that, as popu-
lation size increases toward infinity, the frequency of pairs (pp =
1 — ps) in the population increases toward 1. For large populations,
it is the payoffs from interacting pairs that determine population
dynamics. For the Hawk-Dove payoff matrix (12), the frequency of
Hawks then approaches V/C when all 7’s are equal, independently
of the initial conditions.

Other boundary equilibria may exist where exactly one strategy
is extinct. For instance, the Hawk only boundary equilibrium

(N, np) = ( il 0) (19)

a )\JTHH’

exists if and only if myy#0 and my/myy <0. Moreover, it is lo-
cally stable if and only if wy >0 and 7pmwyy < Ty py. Similarly,
the Dove only boundary equilibrium

(. o) = (0.~ 22 ) (20)

X DD
exists if and only if wpp#0 and wp/mwpp <0 and is locally stable if
and only if 7p >0 and 7wy pp < T pTT yp.
Most importantly, there are payoff parameters for which the in-
terior equilibrium

(ny, np) = (

TppTTH — TTPITHD TpTTHH — TTpHTTH )
A(TTpuTHp — TrppTthy)  A(TpHTTHD — TTpDTTHY)
(21)

exists. It is interesting to note that equilibrium (21) is indepen-
dent of interaction times. This can also be seen from (16) where
the right hand-side is independent of interaction times and, conse-
quently, the values of ny and np at which both Hawks and Doves
have zero growth rate are independent of interaction times too.
However, due to (17), equilibrium numbers of Hawks and Doves
do depend on interaction times. Stability analysis of equilibrium
(21) also depends on interaction times and leads to complex ex-
pressions. Below we will analyze its stability for the Hawk-Dove
game.

Before doing so, we observe two important effects of singles on
population dynamics (16) (or (18)). First, when singles do not get
any payoff (mp = my = 0), then (0,0) is the only equilibrium. Sec-
ond, as the pairing rate of singles A tends to infinity, both bound-
ary and interior equilibria tend to (0,0). These observations clearly
show that existence of non-extinction equilibria in these dynamics
depends on singles being considered.

The important observation here is that, unlike classic evolu-
tionary game theory, generalization of replicator dynamics that in-
clude singles payoff (i.e., my or mp) can lead to density depen-
dence, and so to non-extinction equilibria. For this to happen it
is essential that singles receive payoffs. We note that our payoffs
(to pairs and to singles) are independent of population size un-
like the background fitness approach of Cressman (1992) where
payoffs decrease as population size increases or of Argasinski and
Broom (2013) who assume density dependent fertility rates.

Example 1 continued. For the classic assumptions of evolution-
ary game theory applied to the parametrization of the Hawk-Dove
model (12), the average fitness in the population at its unique NE
is

ﬁ:%m—w>o

when C>V and TI =V —C > 0 when V> C. Thus, the population
will eventually grow exponentially, i.e., there is no stable popu-
lation equilibrium. In fact, even if singles do not pair instanta-
neously, the population will eventually grow exponentially when
gy =7np=0.

Now we consider the case where individuals do not pair in-
stantaneously, pair interaction times may differ, and singles receive
payoff. Provided 71”(5_2‘7;‘)9 >0 and mp <0, the interior population
equilibrium (21) is

_ (T —27p _Tp
(”””m)"(x«f—V)’ vx)

and the population of Hawks and Doves at this equilibrium are
_ Qmp — 7)) (€= V) GroThp — V) + V(27D — 7T1) Th)

(22)

H C—V)2Va
and
D— 7p((C-V)(V —mptpp) +V (Ty — 27Tp) Thp)

VZ(V —O)a

Appendix B gives conditions on parameters that guarantee the sta-
bility of this equilibrium. However, these conditions also imply that
for C>V the interior equilibrium is always unstable (Fig. 2A). In
fact, since my <0 and mp <0 in this panel, the extinction equilib-
rium is locally stable and we observe the Allee effect where the
population goes extinct when initially at low numbers, but it sur-
vives once it overcomes the extinction threshold (Courchamp et al.,
2008) and grows to infinity (Fig. 2E).

In order to avoid this Allee effect in Example 1 whenever
there is an interior equilibrium and (0,0) is locally stable, we re-
parametrize the payoff matrix for the Hawk-Dove game as in the
following example by decreasing payoffs from pairs (specifically, by
subtracting V from each entry of (12)). As we will see, the decrease
in population growth rates due to the fitness component based on
pairs results in the stability of the interior equilibrium whenever it
exists (Fig. 2B and F). Thus, singles payoff can lead to stable inte-
rior equilibria for the combined replicator and population dynam-
ics.

Example 2. The second parametrization of the Hawk-Dove model
we consider has payoff matrix

H D
H(-CV
H(5 8
Here, two fighting Hawks always pay a cost C> 0, while when
a Hawk interacts with a Dove, it gets a positive payoff V, e.g., by
stealing the resource owned by its opponent. In this parametriza-
tion, the payoff a Hawk obtains when interacting with a Dove is
the same as the cost a Dove pays when interacting with a Hawk.
For the classic assumptions of evolutionary game theory, this
parametrization as a matrix game has the same NE (and ESS) as

parametrization (12) in Example 1.5 On the other hand, the average
fitness in the population at the unique NE is now

M=-z

for C>V and IT = —C for V> C. Thus, the population will go extinct.
Now we consider the case where individuals do not pair instan-

taneously, pair interaction times may differ and singles have fitness

consequences. Provided wp >0 and Crp > Vmry, the interior popu-

lation equilibrium (21) is

TTp C7TD —V7TH
(5. m0) = (55 ) (24)

At this equilibrium, the population of Hawks and Doves are

_ 7p (Ttyp (Crtp — Vry) + V(V + 7tpTyy))

H V3

6 This follows from the fact that each entry of the payoff matric (23) differs from
the corresponding entry of (12) by the same constant V.
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and

(Crp = Vrry) (tpp(Crtp — Vary) +V(V + 7tpThp))

VA ’
Appendix B shows that if this equilibrium exists, it is stable (Fig. 2,
right panels). Moreover, if all 7’s are equal and my = mp, the
equilibrium frequency of Hawks is the unique NE, py =V/C, of
(23) (Fig. 2D).

On the other hand, as illustrated by the dependence of this
equilibrium on mp>0 in Fig. 3, py#V/C if the payoffs to singles
are different. From (24), equilibrium population size increases to
infinity as mp increases (Fig. 3B). Moreover, from (6), the pro-
portion of paired individuals converges to 1 (Fig. 3A, see also
Appendix F). Interestingly, the proportion of Hawks does not con-
verge to 0 (for the parameters of Fig. 3, the limiting proportion
is 1/3) even when the payoff 7 to single Doves tends to infinity
since most of the fitness is due to pair interactions at high popu-
lation size.

D=

3. Distributional-population dynamics

In the previous section, we assumed distributional dynamics
that were independent of population dynamics. In particular, the
distributional dynamics reached its equilibrium very fast at given
strategy numbers and then the population dynamics acted on
this equilibrium distribution. However, this complete separation
of time scales need not hold. For example, perceptual constraints
(Abrahams, 1986; Berec and Kfivan, 2000; Gray and Kennedy,
1994) may prevent individuals from having perfect information
about their environment, making them only locally omniscient. In
order to model distributional and population dynamics on similar
time scales, we split payoffs in (1) as

TTHH THD \ _ Bun  Bup _ [ MHH  MHD (25)

7ou  Top) \Bou Bop MpH  Mpp )’
where we assume that all 8’s and p’s are non-negative. Here we
interpret B’s as the part of payoff that increase fitness (e.g., birth
rate) while u’s decrease fitness (e.g., mortality rate). For example,
Bup is the expected number of offspring produced per interac-
tion by a Hawk when it interacts with a Dove. In the following
continuous-time distributional-population dynamics (e.g., (26) and
(29)), 6% is then interpreted as the probability that, over a small
time interval §, this Hawk produces an offspring. Similarly, 8% is
the probability the Dove dies during this time interval.

We stress here that similarly to ’s for pairs, all 8’s and u's in
(25) are measured per single interaction. To express these per unit
of time, we need to divide them by the average pair duration. Then
distributional-population dynamics are described by the following
set of differential equations’

dﬂ = v( AnH —)»11an-i—2nﬂ nHD)
dt TuH  THD
Bun + Min Mg + Bup + Mpn Nep
THH THD

+ Tyny + 2

an Nyp
—_ And — Angn 2 —)
dt < b HID + Tpp + THD
+ +
+ 7php + 2 Bop + D o + Bou + HD N
Tpp THD
dnyy Nuy | A HHH
=v[-—=4+Zn%) - —n
dt THH 2 H HH HH
dnpp Npp MHDp + UpH
=v|———+Anyn )—7n
dt ( Tp HID T HD

7 Note that it is unnecessary to write the payoff to singles as a difference (e.g.,
7y = Bu — ) since these births and deaths only affect the number of singles.

dripp YT (L2l + &HD 2@nDD (26)
Tpp 2 Tpp

These equations assume that newborns are singles and that, if
a pair disbands due to mortality of one individual, the surviv-
ing individual becomes a single. For example, if a Dove paired
with a Hawk dies, the surviving Hawk becomes a single Hawk. For
this reason there is % (and not “HD) in the equation for single
Hawks. Thus, we assume that one 1nd1v1dual in a pair always sur-
vives. Parameter v >0 allows us to study changes in the relative
time scales of distribution and demographic dynamics. When v < 1
(v > 1), then population dynamics are faster (slower) than distribu-
tional dynamics.
For arbitrary v, we observe that

dH _ d(2npy +nyp +ny) 2,BHH — M
dt — dt a THH HH
+MnHD + TNy = HHH

THD
and
dD  d(2npp +nup +np) 2ﬁDD — Mpp
- = = Npp
dt dt oD
+MHHD + Tpnp = HDD
THD

where Iy and ITp are given by (8) with payoff matrix (25). That is,
fitnesses derived from distributional-population dynamics (26) co-
incide with those of Section 2. What has changed is how these
individual fitnesses are divided among singles and pairs.

At the coexistence equilibrium of (26), the HW distribution
(2) and (6) generalizes to

n )\.UnyszH AvnDnHrHD n )\.UnszDD
HH = 5 4., HD = —— DD = 5 .. -
2V +4ppp V + WUpH + HHD 2v +4ppp
(27)

These numbers now depend on fitness through the death rates
(ie., the u'’s). When wu’s are all zero, then the HW distri-
bution (27) and (6) coincide. Moreover, the equilibria for the
distributional-population dynamics (26) will then coincide with
those of (16). However, when some p’s are positive, equilibrium
points of (26) differ from those given by (16). To illustrate these
differences at a stable equilibrium, we will parametrize model
(26) by payoff matrix (23) because, as we saw in Example 2, this
parametrization leads to a stable interior equilibrium of population
dynamics (18).

Example 2 continued. To parametrize model (26) for the
Hawk-Dove game given by (23), we follow (25) and write payoff
matrix (23) as a difference of two matrices, where the first de-
scribes benefits and the second losses, e.g.,

(% 5)-(55)(V3) 28)

Here the birth rate of a Hawk from an interaction with a Dove (V)
is the same as is the death rate of a Dove when interacting with a
Hawk. Distributional-population dynamics (26) are then

dn n n
H — y(—AnZ — Anynp + 21 4 “HD
dr THH  THD
C 2V
+TuNy + 27”HH + 7”1—10
THH THD
dn n
d—tD = V(- AnD — Angnp +2— + ﬂ) + mpnp
dnHH

= (-2 Ony) -

Z—HHH

dt
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Fig. 4. Dependence of the stable equilibrium of model (29) for Example 2 on the relative speed of distributional dynamics to demographic dynamics. Hawks (Doves)
abundance is shown as the solid (dashed) curve in top panels. The middle panels (C and D) show Hawk frequency. Left panels (A, C) assume relatively low payoff to single
Doves (tp = 1) and as v increases, population abundances converge to the equilibrium shown in Fig. 2F (N = H + D = 6). Right panels (B, D) assume a higher payoff to single
Doves (mrp = 2.5) for which both populations become arbitrarily large as v decreases toward 0. Panel E shows the critical threshold in the (v, 77p) phase space, below which
Doves go extinct and above which both Hawks and Doves coexist at positive numbers. Other parameters are the same as those used in Fig. 2, right panels (i.e., tyy =1,

tp=1,pp=1,A=1,V=1,C=2my=1)

dnpgp NHp v
ar - V(—ﬂ + Anynp) — %nHD
anD _ Npp A 2
i = v(—a + an)' (29)

Provided the interior equilibrium exists, it is

(M. p) = (m;(v +V) W+ V)(Crp(v+V) —muV(2C+ U))>

v AVV2(2C+v)
(30)

and the number of pairs at the equilibrium is given by (27). We
note that the equilibrium numbers of singles continue to be inde-
pendent of the interaction times and, as v tends to infinity, is given
by (24) (see also (21)).

Since equilibrium (30) converges to equilibrium (24) as v tends
to infinity, we assume that equilibrium (24) is in the interior
(i.e., mp>0 and Cmp — myV > 0) in what follows. We observe that

Doves exist (i.e., np > 0) at equilibrium (30) if and only if distribu-
tional dynamics are fast enough so that
CV(2my — 7p)

~ CT[D — NHV '
Fig. 4E shows this bifurcation curve in the mp — v parameter space.
The curve separates the values such that Doves go extinct (parame-
ter values below the curve) from those where Doves survive (above
the curve).

Fig. 4A and B (respectively C and D) show the dependence on v
of Hawk and Dove numbers (respectively, proportion of Hawks) at
the stable population equilibrium. For slow distributional dynam-
ics, total population size is increasing as v tends to 0 since singles
have positive payoffs (my >0, wp >0 in Fig. 4). However, since v =
2 is the threshold below which Doves go extinct in Panel A where
7p = 1, this payoff to single Doves is too low to rescue Doves from
extinction when v is small. Panel B with mp = 2.5 shows the op-
posite case where the Dove population does not go extinct for any
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v >0 and, in fact, as the speed of distributional dynamics decreases
toward 0, both Hawk and Dove population numbers become arbi-
trarily large. As v tends to infinity in these four panels, the sta-
ble interior equilibrium of (29) converges to that of model (16) of
Section 2. In particular, for the left panels, this equilibrium ap-
proaches that of the right panels in Fig. 2 where N=H+D =6
and py =V/C = 0.5 since all 7’s are equal and 7wy = 7p.

4. Contest competition for a limited resource

The Hawk-Dove model, when interpreted as a model of con-
test competition, can represent competition for resources, such as
breeding sites where each site can be owned by at most one indi-
vidual (Kokko et al., 2014). We represent these K sites as a resource
with finite environmental carrying capacity. Individuals are again
either Hawks or Doves, and they can be either searching for the
resource (ny,, np,), owning the resource (ny,, np,), or interacting
with each other when a searcher finds an owner. During the com-
petition for a site there are four possible types of searcher-owner
pairs and the numbers of these pairs are denoted as npyp,, ny.p,.
Np,p,» and np p,. Once the competing pair is formed and jointly oc-
cupy the site, the individuals are no longer searchers for the site or
owners of the site. The notation for competing pairs indicates how
the pair formed. In particular, ny.p, is the number of occupied sites
where a searching Hawk encountered an owning Dove.

4.1. Distributional dynamics
Distributional dynamics at fixed population sizes H and D of

Hawks and Doves, respectively, that are based on the mass action
principle are

dny NyH,
d 2 = )\.HHSF — )\annHo — )\.annDO + —
t THH
dn n n n
Ho :}»HHSF — anano - knDSnHo + HiH, + HoD + H:D,
dt THH  THD  THD
dn n n n
st = — )\,HDSF — A'nDanu — )\,TlenDO + D:D, + H:D, + HoD
t oD THD THD
dnp, np,p
dat :)\.TIDSF - )\.TleTlDO - AnHSnDD + E
dnpy, NHH
stlo 'stlo
— 2 =— —2 4 Anyn
dt THH HsTHo
dny,p Ny,p
so 'so
— = — =2 4 Angn
dt THD Hs Do
dny,p Ny,p,
oYs oY's
— = = 4 Anpn
dt THD DsHo
dn n
Do —— T00e 4 amp,p,
dt Tpp
(31)
where
F=K - nHD — nDO — nHSHD — anDo — nDSDU — nHODS (32)

is the nonnegative number of free sites (i.e., sites that are neither
occupied by a single owner or by a pair). Model (31) assumes that
individual search rate is A. If a searching individual encounters a
free site, it will occupy it and will become an owning consumer.
When a searching Hawk encounters a site owned by a Dove, the
Hawk wins the competition and, when the pair disbands, becomes

an owning Hawk while the Dove that lost the site becomes a
searching Dove. This assumption leads to the term %—g’ in the sec-
ond and third equations. Once again this shows that distributional
dynamics such as (31) may depend on how entries in the payoff
matrix are interpreted.
From (31), the number of free sites evolves according to

% = —A(ny, + np,)F. (33)
That is, the number of free sites changes at a rate proportional to
the number of searchers encountering them. Eq. (33) shows that
the system either converges to a state where there are no searchers
(i.e., ny, +np, =0) or to the set of states where there are no free
sites (i.e., F = 0). Appendix C shows that for each fixed Hawk and
Dove population numbers, system (31) has a unique equilibrium.
It also shows that this equilibrium depends on the abundances of
Hawks and Doves and on the number of sites, K, according to the
following three cases.

1. When the number of individuals is no larger than the number
of sites (H + D < K), all Hawks and all Doves own sites, i.e., the
equilibrium is ny, = H, np, = D.

2. When the total number of individuals is larger than the number
of sites (H + D > K) while the number of Hawks in the popula-
tion is no larger than the number of sites (H <K), all Hawks
occupy sites either as single owners or in H,Ds pairs and all
other K — H sites are occupied by Doves.

3. When the number of Hawks in the population is larger than the
number of sites (H> K), all sites are occupied by Hawks, either
as single owners or in HyHs and H,D;s pairs.

As the distributional equilibrium is quite complicated in the
last two cases, the next example considers distributional dynam-
ics (31) when only Hawk-Hawk interactions are time consuming.

Example 3. In this example, we will assume that typ and tpp
tend to 0. As Typ and tpp tend to 0, the number of pairs, except
NygH,» Will quickly equilibrate with the number of singles, i.e.,
Ny,p, = ATHpNH,Np,

NH,p, = ATHDND,NH,

Np,p, = AIDDnDsnDO. (34)
We substitute this pseudo-equilibrium into distributional dynamics
(31) to get

dn n
H _ 7)\.an1: - AannHo - )\'annDo + —HsHo
dt THH
dn n
Ho AnH F — )»annH + )\nH np, + HiH,
dt s 'S o s 0 ‘EHH
an
S = —Anp.F + Angn
dt p, I+ Anynp,
an
¢ = Anp F — Angn
d Dy H, 1D,
dnyy NHH,
S0 = — 22 4 Ang.n 35
it — T 4y, (35)

where F = K — (ny, + np, + ny,p, ). Appendix D analyzes the unique
distributional equilibrium of (35) and proves that it is globally
asymptotically stable at any Hawk and Dove population abun-
dances.

In particular, the three cases above simplify to

1. When the number of individuals is no larger than the number
of sites (H + D < K), all Hawks and all Doves own sites, i.e., the
equilibrium is
(nHS, ny,, Np,, Np,, nHSHO) = (O,H, 0,D, O) (36)
(see Fig. 5 for K>100).
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Fig. 5. Dependence of the number of searchers (ny, and np,) and number of owners
(ny, and np,) at the distributional equilibrium of model (35) as a function of K. The
overall number of individuals is fixed at H =60 and D = 40. Hawks are described
by solid lines, Doves are described by dashed lines. Black lines denote owning in-
dividuals and gray lines denote searching individuals. The dotted line denotes the
number of Hawk pairs, i.e, nyy,. Parameters: A =1, tyy =1, Typ =0, pp = 0.

2. When the total number of individuals is larger than the number
of sites (H+ D > K) while the number of Hawks in the popula-
tion is no larger than the number of sites (H <K), all Hawks
own sites while Doves occupy the rest of the sites and some
Doves are searching, i.e., the equilibrium is

(anv ny,, Np,, Np,, nHSHo) = (O, HH+D-KK-H, 0), (37)

(see Fig. 5 for 60 <K < 100).

3. When the number of Hawks in the population is larger than the
number of sites (H > K), all sites are occupied by Hawks and all
Doves are single searchers.

1+ (H=2 K)) Ty + /1 + Atup CH + (H — 2 K)?ATun)

MHs = ZA‘THH
=1 = (H=2 KAt +/1+ Atun 2H + (H = 2 K)2Atun)
MHo = ZATHH
np, = D
Np, = 0
1+ HATyy — /1 + Aty (2H + (H - 2 K)2AThn) 38
Ny, = 27T ( )

(see Fig. 5 for K < 60).

4.2. Distributional-population dynamics

To combine distributional dynamics (31) with changing pop-
ulation size, we must include fitness effects (cf. Section 3). Sin-
gle Hawk and Dove searchers (owners) gain payoffs sy, (my,) and
7p, (7p,) per unit of time, respectively. When in pairs, payoffs are
given by a payoff bi-matrix

H, D,
Hs ( 7THH,» TTHH,  TTH,D,» TCDH, (39)
Ds \ 7pH,. TH,D, TTD,D,» TD,D;

where the first (second) payoff in each entry of the matrix is that
of the row (column) player. With fitness defined as the average
payoff per unit of time (cf. (8)), we now have

TTHgH, TTHyH, TTHg D, TTHoD.
o nHSHD( o T T ) + Ny, Top T TWHDs =" TTH, TTH, + N, TTH,
H =

H
and

TT) T
- Np,p, (F22e 2L )y p, T8 4y py TR0l 4y T 1, T,
b =

D

(40)

where H = anng + Ny,p, + NH,Ds + Ny + NH, and D= ansDo +
Ny,p, + Np,H, + Np, + Np, are the total number of Hawks and
Doves, respectively.

To add the fitness terms in (40) to the distributional dynamics
(31) in order to produce a distributional-population dynamics in
analogy to model (26), we again split payoffs for pairs into birth
and death rates, i.e., 7;; = B;j — ;. Distributional-population dy-
namics are then

dny NpyH,
i =v( = Anp,F — Angny, — Ay, np, + ﬁ) + (B, — 1n,)
BrH, + Br,H, Br.,
Ny, + B, N, + NpigH, + U
THH THD
. Bun.,
Typ
dn n n n
Ho :U(}anSF — )\TIHSTIHO — )\TlDSnHa + HiHy + il + HSDO)
dt THH THD THD
MHH, + K H,H. MD,H MD,H,
— Wy, Ny, + #nﬂsm + TH"DS ny,p, + ‘CHSDD 1y,D,
dn np, n n
Dy =])( — AnDSF — )\.nDSI’lHO — )\.TlDSTlDD + D:Do + HiD, + HDDS)
dt Tpp THD THD
Bb,p, + Bo,p
+ (Bp, — wp)np, + Bp,np, + —————""Tp,p,
Tpp
TR TV
HD HD
dnp, Np,p,
I =v(Anp,F — Anp,np, — Any,np, + T;D")
Mp,D, + DD, MHD, HH,D;
— MKp,Mp, + T”DSDD + D Nyp, + o 1NH,D;
dnyy nHH JHH, +MHH
d; 0 :U( sI1o +)\'nH5nHu) sI1o 0. ansHD
dny,p, nHD M H;D +MDH
d; 0 :v( so + A,nHSnDD) so olls anDa
dn n +
;tons =v( HODs 4 )‘*annHo) MHGDS MDSHU Nip,
dnp,p nDD MDD +MDD
d; 0 :U( sUo +}"nDsnDo) slUo 0 SnDSDO
(41)

where F is given by (32). Here the model assumes that newborns
are single searchers. This makes it important to also write pay-
offs to singles as differences (e.g., 7wy, = By, — Un,)- Population de-
mography is given by two processes. First, the model assumes de-
mographic changes associated with singles. For example, in the
first equation in (41), the term (By, — uy,)ny, describes changes
due to birth and death among single Hawk searchers. Note that,
in the simulations below, we assume that only individuals who
are on a site either as singles or in pairs can give birth (and so
Bu, = Bp, =0). Term By, ny, describes birth for those Hawks that
own a site. Second, (41) considers demographic changes due to
contests between individuals. For example, term % HsHo
describes newborns produced as a consequence of a contest be-
tween two Hawks, i.e., when a searching Hawk is paired with an
owning Hawk. One of the two Hawks will win the site and will
gain fitness by the opportunity of reproducing in the site. The
probability of winning the contest and reproducing is captured by
terms By, in the case it is the searching Hawk that wins the
contest and By, y, when the owning Hawk retains the site after

the contest. Term ﬂ‘;’ﬂanDo represents newborn Hawks produced
HD
when a searching Hawk is paired with an owning Dove, because

in this case we assume that with probability one the Hawk will
win the contest. In the second equation for owning Hawks, term
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ng:s ny,p, represents the situation where the owning Dove paired

with a searching Hawk dies and the searching Hawk becomes a
single owning Hawk. The other terms follow the same logic.
A lengthy but straightforward calculation based on (41) yields

dH  d(2nyy, + nyp, + Ny,p, + Ny, +Ny,)

kg = I1yH
dt dt H
and

dD d(ansDa + Ny,p, + Ny,p, + Np, + nDD)

&~ =D
dt dt

where [Ty and I1p are given by (40). Thus, when distributional dy-
namics are fast (i.e., v tends to infinity), H and D evolve according
to this dynamical system where I1y and I1p in (40) are evaluated
at the unique equilibrium of (31) for current population sizes.

Since the notation for pairs only indicates how the pair was
formed (i.e., there is no owner or searcher when in a pair), we
assume that once two individuals occupy a site, their payoffs do
not depend on who was the owner and who was the searcher
when they encountered each other. In particular, payoffs to Hawks
in all Hawk-Hawk pairs are equal as are those in Hawk-Dove
pairs. That is TTHH = TUH¢H, = TTHoHs> T'DD = DD, = TTD,Ds» TUHD =
TTHDy = TTH,Ds» and TTpH = T'DsH, = TCD,H;s in (39) Fitnesses (40) then
simplify to

- 20y, T2 + (N, + MH,b,) T2 + Ny, T, + Ny, T,
H= :
H

anng% + (nDsHo + nDng)% + np,7Tp, + Np,TTp, (42)
D .

However, population dynamics (41) are too complex for mathe-
matical analysis even when we assume fast distributional dynam-
ics. We thus restrict our attention to the case where tpp and 7yp
tend to 0 as in Example 3 for the remainder of this section.

Example 3 continued. We first derive population dynamics for
Hawks and Doves when v tends to infinity by assuming that dis-
tributional dynamics track the unique equilibrium of the simpli-
fied model (35) instantaneously. Substituting distributional equilib-
ria (36), (37), and (38) to (42), we obtain

Mp =

dH
E = T[HOH
(43)
dD
E = JTDOD
when H+D <K,
dH
E = H((D +H - I())\.T[HD + 7TH0)
dD
G = (K=H)2(D+H —K)App +7p,)

+(D+H—K)(H)\JTDH +7TDS) (44)
when H+D > K and H<K, and

dﬂ _ (—ZnHH+(DAnHD+nHO+nHS)THH)\/1+MHH(2H+(H—2 ’<)2)‘THH)7
dt N Z}JI?IH
=21y (+HAtyy)+tyy (DAryp+ry +7y +(H=2 K)A(DAnyp+ry —Ty ) Tyy)
27fy
dD erH(—1+(21(—H)AIHH+\/1+AIHH(2H+(H—2 K)Z)\THH))
— = D|m
dt Ds + 2Ty
(45)
when H>K.

To analyze models (43)-(45), we will assume that owners ob-
tain positive payoffs (7y, > 0, mp, > 0) and searching individuals
obtain negative payoffs (my, <0 and 7p, < 0). There is then no
non-zero equilibrium for (43) in region H + D < K because both
Hawks and Doves increase exponentially and so all trajectories
with initial positive population sizes for Hawks and Doves leave
this region. If, in addition, Hawks gain payoff in their Hawk-Dove
interacting pairs (wyp>0), Eq. (44) shows that Hawks are always
increasing in the region where H+ D > K and H <K, and so these
trajectories must enter the region where H> K. Furthermore, if
oy <0, 8Appendix E shows that Eq. (45) has a unique globally
asymptotically stable equilibrium. Altogether, this implies that the
system of Eqs. (43)-(45) has a globally asymptotically stable equi-
librium given by

2 Ky —7oun (7w, +37h, ) Tup +270H, 7Ty, Tiy) +700, 2T0up— (7Th, +7Th, ) Tn)
22 704, T (TTH, THH — 2TTHn)

t.0) =

(27THH_(7TH0+7THS)THH)\/(2 KA‘”HH+7THA)2_4 K)LT[HGHHS THH
+ ,o) (46)
2\ T, Thh (TTH, THH — 27hy)

provided that 2myy # gy, Ty, and

TTH, TTH,
HD)=(K| ——— — — +2
( ’ ) < ()\,KH'HDTHH—JTHS JTHS + ),O)

if 27y = TTHy THH-

Fig. 6 shows the population equilibrium based on simula-
tions of the dynamics (41) applied to the simplified model of
Example 3 without assuming fast distributional dynamics. Panel A
uses the classic Hawk-Dove payoff matrix

V-C 2V v o2V cC 0
< 0 v>=<0 v)‘(o 0) (47)

(see also (12)) whereas panel B uses (28). The simulations sug-
gest that there is a unique equilibrium for each set of parameters
used in this figure. When distributional dynamics are on a similar
time scale as population dynamics, we see that there are signifi-
cant differences in the equilibrium for the two payoff matrices. For
classic payoffs, we observe that both Hawks and Doves coexist at
the equilibrium (panel A) for all v’s. For the other payoff matrix
(28) (panel B), we observe that the range of v’s for which Doves
coexist with Hawks is much smaller. As v tends to infinity, we see
in Fig. 6, that the total numbers of Hawks and the total numbers
of Doves tends to the equilibrium given by (46).

5. Discussion

Motivated by genetics, where players are alleles, the classical
theory of two-strategy, two-player symmetric evolutionary games
assumes that all individuals get payoffs only when paired, pair-
ing is random and instantaneous, and the number of pairs is given
by the Hardy-Weinberg distribution. With an individual’s fitness
equated to its expected payoff, the population growth rate (which
is assumed to be proportional to the mean fitness of the popula-
tion) is then frequency dependent but density independent. For the
classical Hawk-Dove game, population growth is exponential as in
Eq. (15). On the other hand, growth in natural populations is rarely
exponential. Density dependent growth is universal. This calls into
question the degree to which results of two-player matrix games
may be extended to make predictions about natural populations.

The above assumptions on pairs make sense when considering
for example mating between sexes, but fitness is also gained/lost

8 We will assume that 7y, >0 and 7py <0 from now on. These conditions are
satisfiled by both parametrizations of the Hawk-Dove payoff matrices given by
(12) and (23) (see also (47) and (28)) that have been used throughout the article.
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Fig. 6. The dependence of the equilibrium of distributional-population dynamics (41) on v (v >0.2) when interaction times between Hawks (solid line) and Doves (dashed
line) and between Doves are very short (i.e., Typ = Tpp = 0.0001). Left (respectively, right) panel is for the Hawk-Dove game with payoff matrix (47) (respectively, (28)).
Other parameters: A =1, tyy =1, V=1, C=4, K= 10, By, = Bp, = 0.2, iy, = up, = 0.1, By, = Bp, =0, py, = pp, = 0.1.

when individuals are singles. For example, fitness may increase
when an individual forages through an increase in its survival
probability, or an increase in egg production. In this article, we de-
velop a new theoretical approach that relaxes these assumptions:
(i) individuals do not pair instantaneously so that there are sin-
gles in the population, (ii) individuals gain/lose fitness not only
when paired, but also as singles, and (iii) duration of encounters
between individuals depends on their strategies. We find that in-
cluding singles can regulate population growth which allows the
study of both frequency and density of strategies.

Our approach builds on that developed by Kfivan and Cress-
man (2017) who assumed that individuals pair instantaneously, but
interactions between different strategies take different time. As a
result, the rate (per unit of time) that individuals are paired with
each other depends on the strategies of the players. This idea that
interaction rates might be strategy-dependent was incorporated
into evolutionary game dynamics by Taylor and Nowak (2006). In
their analysis of the evolutionary stability of strategy dynamics,
the fitness of a strategy is given in units of payoff per interaction
(Argasinski and Broom, 2018), and the interaction rates refer to
the intensity with which certain strategies will assort with other
strategies. This mirrors the classical theory in which the number
of interactions determines overall fitness. Our models include the
length of time a game is played, so our approach differs funda-
mentally from Taylor and Nowak (2006) and is more closely re-
lated to that of Argasinski and Broom (2018) where the number
of games that are played in a period of time is taken into ac-
count.? This approach allows one to study the fitness of a strategy
when fitness includes more than game payoffs, e.g., singles pay-
off. In Section 2, we see that when singles payoff does not depend
on strategy, and interaction times are equal, then the Nash equi-
librium of the game is unchanged from classical predictions. Un-
der these assumptions, including singles is equivalent to adding
background fitness (Cressman, 1992). However, if singles payoffs
depend on strategy, then under the aforementioned assumptions,
we see (Fig. 2, panels C and E) that these payoffs contribute more
to average fitness because the proportion of singles tends to 1 (re-
spectively, 0) when the total population size, N, tends to zero (re-
spectively, infinity).

In Sections 2 and 3, where payoffs to singles and pairs are
density independent, we show that non-instantaneous pair for-
mation can induce density dependence in the population growth
where the population growth rate is still given by the average fit-

9 These approaches are equivalent when all interactions take the same amount of
time and fitness is accrued only through the game.

ness in the population.'® The existence of a coexistence equilib-
rium (i.e., an interior equilibrium where both strategies have pos-
itive density) relies on a balance between the positive payoff of
singles and the negative average payoff from the game (or vice
versa). Moreover, the stability of an interior equilibrium for the
Hawk-Dove model depends on the parametrization of its payoff
matrix, as seen in Fig. 3 of Section 2, where distributional dy-
namics act on a fast time-scale compared to population dynamics.
For instance, an interior population equilibrium may exist for the
Hawk-Dove model with classic payoff matrix (12) when the pay-
offs to singles are negative. However, this equilibrium is never sta-
ble (Example 1).!" On the other hand, when the payoffs to interact-
ing pairs are all decreased by the same amount as in payoff matrix
(23) of Example 2,'? a stable interior equilibrium often emerges if
payoffs to singles are positive. Thus, the eco-evolutionary dynam-
ics depend on where fitness is accrued, as remarked in Argasinski
and Broom (2013, 2017, 2018) (see also McNamara, 2013).

The population dynamics (16) of Section 2 serve to frame our
thinking around relating ecological parameters to V and C from
the Hawk-Dove payoff matrix. When these model equations have
a stable interior equilibrium (in Example 2), it can be shown using
(24) that the proportion of Hawks at equilibrium will increase with
increases in V and decrease with increases in C. This is consistent
with the classical Hawk-Dove game at the interior ESS where the
proportion of Hawks equals % On the other hand, in the classi-
cal game, Hawks and Doves coexist if and only if the cost when
two Hawks fight is higher than their expected gain (i.e., V<C)
whereas, in Example 2, we show that coexistence may also oc-
cur when V> C due to singles receiving payoff. The same result
(i.e., coexistence when V> C) was shown by Kfivan and Cress-
man (2017) at fixed population size. Specifically, when pairs form
instantaneously and interactions between two Hawks take long
enough compared to other interactions, they showed that non-
aggressiveness can evolve even when V> C. Similarly, in the re-
peated Prisoner’s Dilemma game, cooperation evolves when indi-
viduals can control how many rounds to continue an interaction
(i.e., they can opt-out; Zhang et al., 2016). These models are the
limit cases of the model investigated in Section 2 when the mean

10 Other approaches (e.g., Argasinski and Broom, 2013; Cressman, 1992) to get
convergence to non-zero population numbers typically assume some explicit den-
sity dependent mechanisms in individual payoff/fitness.

11 The intuitive reason for this is that the negative payoffs to singles locally stabi-
lizes the extinction equilibrium whereas the positive payoffs from interacting pairs
at the distributional equilibrium drives the population to infinity once its size is
large enough.

12 This does not change the evolutionary outcome (i.e., ESS) of the classic Hawk-
Dove game (Hofbauer and Sigmund, 1998).
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time between encounters tends to zero and the number of singles
tends to zero too. Once again, we see that including singles and/or
including interaction times can influence the evolutionary predic-
tions.

Although the parameters V and C from the Hawk-Dove
game are not well-defined ecological parameters, we show in
Section 3 that it is possible to decompose the payoffs from
the Hawk-Dove game into payoffs that increase fitness and pay-
offs that decrease fitness. This allows us to examine population-
distributional dynamics when relaxing the assumption that distri-
butional dynamics are fast compared to population dynamics. In
particular, non-aggressiveness can evolve when the distributional
and population dynamics are on similar time scales. This result
does not depend on the amount of time that individuals are paired
but only on the relative time scales of the two dynamics. This is il-
lustrated in Fig. 4 where we see that coexistence depends on the
speed of distributional dynamics relative to population dynamics.

Our final model (Section 4) includes an explicit density-
dependent mechanism in the Hawk-Dove game through competi-
tion over a fixed number of breeding sites. With the usual assump-
tion that a Hawk gains the resource (i.e., the site) when interacting
with a Dove, Hawks always win at the equilibrium of the distribu-
tional dynamics in the sense that Doves can only own breeding
sites when there is an insufficient number of Hawks to occupy all
sites (Fig. 5). Not surprisingly, Doves are then driven to extinction
when population sizes also evolve and the distributional dynam-
ics are fast (i.e., v is large). Coexistence of Hawks and Doves now
requires that the combined population and distributional dynam-
ics operate on a similar time scale (Fig. 6). In particular, as v in-
creases, Doves go extinct. Interestingly, this effect of increasing v
in the density dependent model of Section 4 is opposite to the co-
existence outcome for large v in Section 3 (Fig. 4) where the model
has no a priori density dependence.

In sum, we have shown that including singles can induce den-
sity dependence into the game’s population dynamics. This allows
one to study not only the frequency but also the density of strate-
gies. We have been able to study how singles and the relative time
scales of the distributional and population dynamics affect the evo-
lutionary predictions of the classical game. Although we have as-
sumed here density independent payoffs to both singles and pairs,
it will be interesting to examine in future work how our predic-
tions may be affected by payoffs that can change with the envi-
ronmental condition.
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Appendix A. Uniqueness of distributional equilibrium of (5)

Fix H and D and define qy = %H (and gp = %D) as the proportion
of single Hawks (Doves) in the Hawk (Dove) population. Then, at
an equilibrium of (5),

1
W=7 + AtyyHqy + AtupDap (A1)
1 .
qp

~ 1+ AtupHgu + AtopDap

since, for example,

qH(l + )\,THHHQH + )\THDD(]D) = nﬁH (] + }\,THHHnﬁH + )\,THDD%>

1
= H(”H +2nyy +npp) =1

by (6).

By Lemma 2 in Garay et al. (2017), there is a unique solution
of (A.1) with gy and qp between 0 and 1 (in fact, both gy and
gp will be strictly between 0 and 1) for each fixed H and D. The
equilibrium solution of (5) is then

Ny = Hgy
np = Dqp

1
2
Nyy = E)‘THHHH
Nyp = ATupNaNp
1
2
Npp = E)L‘CDDHD

which, from (A.1), will satisfy H = ny + 2nyy +npp and D =np +
nyp + 2npp. This will be the only equilibrium solution of (5) for a
given H and D.

Appendix B. Stability of equilibria for model (18)

Because eigenvalues of linearized model (18) at extinction equi-
librium (ny, np) = (0, 0) are g, and 7 p, this equilibrium is locally
stable when 7 <0 and 7rp <O.

Eigenvalues of linearized model (18) at equilibrium (19) are
(ymun)/ eyt — Tyy),  and  (Tpu7ty — TpTyy)/ (T Thp —
7wy ). The boundary equilibrium exists (i.e., the Hawk only equi-
librium is positive) and is locally stable if and only if wyy <O,
JTH>0, and JTDHT[H<7TD7THH.B

Similarly, eigenvalues of linearized model (18) at equilibrium
(20) are mpmpp/(27pTpp — pp), and (wppTy — TpTyp)/(Tpp —
7pTyp). This equilibrium exists (i.e., the Dove equilibrium
is positive) and locally stable when mpp<0, 7p>0, and
JTTpITHp < TTppTTH.

Stability analysis of the interior equilibrium (21) leads to com-
plex expressions. Instead, we analyze its stability for the Hawk-
Dove parametrizations in Examples 1 and 2.

First we consider the parametrization of the Hawk-Dove model
given by (12). Using Mathematica (Appendix F), we calculated
trace

VV -0)
tr(J) = —
+27p7y (Tpp — 3Tup + Tn) + T Tup + V (7Tp

—1y)) —C(7p (7tp (Tup — 47Tpp) + 27 Tpp) + V(77D — 7TH)))
and determinant
mpV2(C— V)2 (mry — 27p)

A

of the Jacobian matrix evaluated at the interior equilibrium
(22) where

A=(C-V) (V(C - V)(V - 27pTpp) — THD(27TD2‘CDD(V -0
+V (@p(C+V) —yV))) + 2tupV 2np — 7wu) ((V - C)
(V = 2mptpp) + THpV (27tp — 7T1)).

(V (70> (—40p + 9Thp — 4Thn)

det] =

Using the Reduce command of Mathematica (Appendix F) un-
der the assumptions that equilibrium (22) is interior and parame-
ters V, C, Ty, THp, Tpp, A are all positive, we found that tr(J) <0

13 We ignore degenerate cases with eigenvalue 0.
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and det] > 0 (i.e., the equilibrium is locally asymptotically stable)
if and only if'4
C?TDZ

Ve b
0<C< <(7TH_37TD)2’

0< THH <
Thp (V (7t — 37p)? — Crip?) + (V — O) (27tp Tpp (71 — 271p) + V (70p — 7H))
ZJTDV(ZJTD - T[H) ’

(V - O)Qrptpp(7tn — 27p) +V (p — 7TH))
CT[DZ—V(T[H—:‘}T[D)Z '

In particular, these conditions imply that the interior equilibrium

cannot be stable for the case where C> V.

Second we consider the parametrization of the Hawk-Dove
model given by (23). From (24), there is an interior equilibrium
if and only if mp >0 and Vmy < Crp. Using Mathematica, we cal-
culated trace

tI'U) _ CT[DV(ZCT[DTDD + V(ﬂDTHD — 27T Tpp + V))

B
and determinant
J'I,'I_)V3 (C?TD — ITHV)
B

of the Jacobian matrix evaluated at the interior equilibrium
(24) where

THD >

det] =

B = 2C?mp? tppTap + mpV (—4CTy Top THp + CV (2Tpp + Thp)
+V2(tup + 2Tun) — 4uTopTunY ) + 27p* TyV
(2Ctpp + TupV) + VA(V — 27057pp) (V — 7Ty Tp)-

Using the Reduce command of Mathematica (Appendix F) un-
der the assumptions that equilibrium (24) is interior and parame-
ters V, C, Thy, THp» Tpp, A are all positive, we found that tr(J) <0
and det] > 0 (i.e., the equilibrium is locally asymptotically stable)
whenever it exists. Note that these conditions can hold both when
V> C as well as when C< V.

Appendix C. Unique equilibrium solution to distributional
dynamics (31)

We want to show that, given H and D, there exists a unique
distributional equilibrium of system (31), for which the number of
occupied sites is at most K.

Eq. (33) shows that the system either converges to a state
where there are no searchers (ny, +np, = 0) or to the set of states
where there are no free sites (F = 0).!°> We show that at the distri-
butional equilibrium there are no searchers if and only if H+ D <
K. If there are no searchers, there are no pairs and so all individ-
uals are owners (i.e., ny, = H and np, = D) and, consequently, the
total population size cannot be larger than the number of sites,
i.e., H+ D < K. Conversely, suppose that the total number of indi-
viduals satisfies H + D < K. If there were some searchers at the dis-
tributional equilibrium, there would be no free sites (i.e., all sites
would be occupied) and so H+ D =K. As we assumed there were
some searchers, the total population would be larger than K, a con-
tradiction. Thus, all individuals are owners if and only if H+ D < K
and in this case, ny, = H, and np, = D is the unique equilibrium.

Now we assume that H + D > K. Thus, there must be searchers
at the equilibrium and (33) implies that F =0, i.e., all sites are
occupied (i.e., K = ny, + np, + Ny, + Nyp, + Np,pd, + NH,D, )- Then,

14 Here, we ignore the degenerate cases where 37y = 7y or Crp? =V (mry — 37p)2.
15 This equation is also important in that it guarantees that model (31) is eco-
logically well-defined. That is, all state variables (i.e., the number of singles and
pairs) as well as the number of free sites must stay non-negative when initially
non-negative.

by adding the first and fifth equations of (31), an equilibrium of
(31) must satisfy ny (F 4+ np,) = 0. Also, if ny, > 0, then F =np, =
0 and so all sites are occupied by Hawks and H> K. When H > K
then ny, > 0, thus, ny, =0 if and only if H<K.

First we assume that H<K. Then all Hawks occupy sites as
owners or in HyD; pairs (i.e., H=ny, + ny,p,) and all other K — H
sites are occupied by Doves as owners or in DsD, pairs. As there
are no Hawks searching, we have nyp, = ny,p, = 0. Under these
assumptions, equations for equilibrium of model (31) are

K =ny, + Np, + Np,p, + NH,D, = H + nDD(l + )L'L'DDHDS) (C1a)
H :an(] -I—)»THDHDS) (C]b)
D =np, + np, + 2np,p, + Np,H,

=np, + Np, + ZA'TDDnDsnDO + )\,THDnDana. (C]C)

From (C.1a) and (C.1b), solve for np, and ny, in terms of np,.
Then system (C.1) can be re-written as a cubic equation for un-
known np,
ngskz TppTHD +

)»ngs ()\.TDDTHD(zK —D— H) + Tpp + THD) +
np, (=DA(Tpp + Thp) — 2HATpp + AK(2Tpp + Thp) + 1)
-D-H+K=0. (C2)

Since this cubic has positive leading coefficient and negative con-
stant term, there is exactly one nonnegative root if the coefficient
of np, is negative whenever the coefficient of n%)s is negative by
Descartes’ rule of signs. To see this, suppose that

AtppTup (2K —D —H) + tpp + Tp < 0.
That is
2KATppThp + Tpp + Tep < ADTppTyp + AHTppThp.
Then
2KAtpp +1 < ADtpp + AHTpp.
Since D> K,
2KAtpp + AKtyp +1 < ADTpp + AHTpp
+ ADtyp < AD(tpp + Tp) + 2HATpp.
Thus, the coefficient of np,,
—AD(tpp + Twp) — 2AHTpp + AK(2Tpp + Thp) + 1,

is negative. Thus, the cubic (C.2) has exactly one positive root for
np,. We see from (C.1a) that K — H = np (1 + Atppnp,). Since H <K,
it follows that np, > 0 and so we have a solution with ny,, np.p,
and ny,p, all nonnegative.

Second, if H>K, then ny, > 0 and all K sites are occupied by
Hawks (since F = np, = 0) either as owners or in HoH; and H,Ds
pairs. As there are no Dove owners, we have the following three
equations

K= Ny, + Ny,H, + NY,p, = Ny, + )\.THHTlHSnHO + ATHDnDSnHD (CBa)
H = ny, + Ny, + ZA'THHHHSHHD + )"THDnDSnHO (C3b)
D= Np, + Np,y, = Np, + AIHDnDSnHO. (C3C)

System (C.3) can be re-written as a cubic equation for unknown
rlH0
A Tup Ty, + Angy, (ATunTup (H + D — 2K) + (Tup + Tha))

+ (1 4+ A(typ(D —K) + Ty (H — ZK)))HHO —-K=0.
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Again, suppose the coefficient of nﬁa is negative. That is,
ATiuTup(H + D — 2K) + (Typ + Thh) < O.

Then H+ D < 2K and

AHtyp + ADtyp + 1 < 2AKTyp.

Thus

Aup(H — K) + ADtyp + 1 < AKthp.

Since H> K,

ADtyp +1 < AKthp

and

1+ ADtyp + AHtyy < AKtyp + 2AKTHY

since H<2K. That is, the coefficient of ny, is negative and so
the cubic (C.4) has exactly one positive root for ny, by Descartes’
rule of signs. It follows from (C.3c) that np, > 0. Moreover, from
(C3a) and (C3b), we see that K=H —ny (1 + Atyyny,). Since
H=K, we have ny, ny.y,, ny,p, are all nonnegative.

Appendix D. Global stability of the unique distributional
equilibrium of (35) for Example 3

To prove global asymptotic stability, we first show that trajec-
tories of (35) converge to an equilibrium point. Since there is a
unique equilibrium point in each of the three regions in the main
text, the equilibrium is globally asymptotically stable if it is locally
asymptotically stable (we show this local stability second).

From (33), either F converges to 0 or ny, + np, converges to 0
for a fixed trajectory of (35).

Case 1 (ny, + np, converges to 0). By the last equation of (35),
Ny,H, converges to 0. Thus ny, = H — 2ny y, — ny, converges
to H and np, = D —np, converges to D. That is, H+D <K
and the trajectory converges to equilibrium (36).

Case 2 (ny, + np, does not converge to 0). Since F converges to
0, H + D > K with equality if and only if ny, = 0 and np, = 0.
Thus, H+ D > K.

From (35),

d(ny, + Ny, )

I (D.1)

= —)\,TlHS (F + nDD)A

Thus either ny, + ny,, converges to 0 or ny, (F +np,) con-
verges to 0.

Case 2(i) (ny, + ny,y, converges to 0). Then ny, converges
to H (and so H<K) and ny, + np, converges to K (and so
np, converges to K — H). The trajectory converges to equi-
librium (37).

Case 2(ii) (ny, + ny,p, does not converge to 0). From (D.1),
Ny, + np,p, is decreasing and so converges to C> 0. Also,
Ny, + Ny, = H — (N, + np,p,) is increasing to H—C > 0.
Then np, = K — F — (ny, + ny,n,) converges to K — (H—C)
since F converges to 0. We claim that np, converges to
0 (i.e, K=H—C). Otherwise, ny, converges to 0 (since
ny,np, converges to 0) and ny.y, converges to C> 0. But
dnHSHO _%

= + Ang,ny, < 0 when ny, =0 and ny.y, =
dt THH

C >0 and so ny,y, cannot converge to C. Thus, np, con-

verges to 0 and np, converges to D. Also, ny, + ny.y, con-
verges to K and so H > K. Furthermore, for large t,

ANy, _ N,
dt THH

n
+AannHD X — _;II;:O +X(C - nHSHO)(H —C—- nHSHU).
(D.2)

The approximation gets better as t increases along the
trajectory. Thus, the dynamics on the (omega) limit set
of this trajectory for (35) is described by the one-
dimensional differential equation for ny.y,. Since trajec-
tories are bounded, npy.y, (t) must converge to an equi-
librium value for the given trajectory. That is, all compo-
nents of the trajectory converge to the equilibrium given
by (38).

We now show that the unique equilibrium is locally asymptoti-
cally stable. As the number of Doves that jointly occupy sites tends
to 0,'® all Doves are singles (D = np, + np,), and Hawks are either
singles or in Hawk-Hawk pairs (H = ny, + ny, + 2ny,y, ). Substitut-
ing np.y, = (H—ny, —ny,)/2 and np, =D — np, into (35) leads to
simplified distributional dynamics

d;’fs — —%ans 2 K +ng, +np, — H) + H;l;’ﬁn”

dnHo _ H - Ny, — Ny, + an)\-THH (ZK —H-— 3nHD + nHS)

dt ZTHH

an 1

dts = EA’nDs (H-2 K- 2nDs + ny, — 3an) + )\.D(npS + nHS).

(D.3)

Finally, as shown below, the equilibrium points (36), (37), and
(38) are locally asymptotically stable.

Using Mathematica (Appendix F), we calculated eigenvalues of
the Jacobian matrix of (35) evaluated at equilibria (36)-(38). The
eigenvalues at equilibrium (36) are

M =AH+D-K),
_ \/4H}»THH + ()\.KTHH - 1)2 + )\,KTHH +1

)\,2 ZTHH
. VAH Ty + Kty — 1)2 — AKTy — 1
> 2Tyy '

These eigenvalues are real and they are all negative when H + D <
K.
The eigenvalues at equilibrium (37) are

A =A(K—H-D),
_ AHATa + (WKt — D2 + MKty + 1

X
2 2Ty

e VAHA Ty + (MK Ty — 1)2 = AK Ty — 1
T 2Tyy '

These eigenvalues are real and they are all negative when H + D >
K and H <K.
The eigenvalues at equilibrium (38) are

1—2DAtyy + Aty (2K — H) — \/MHH (Atun (2K = H)2 + 2H) +1

2Ty

M=

e (o @K — )2 4 2H) + 1

A2
THH

dn, n, . .
—ie < - ;’Hi + Ang,np, <0 if nyp, >0 and Typ is

16 For example, from (31),
small enough.
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1+ Aty (2K — H) — /ATy Ty 2K — H) + 2H) + 1

A’3 ZTHH

All three eigenvalues are negative when H > K.
Thus, in all three cases, the unique distributional equilibrium of
(D.3) is locally asymptotically stable.

Appendix E. Unique equilibrium solution of (45)

To find equilibria of (45), notice that dD/dt <0 if D> 0 under
our assumptions that 7rp, < 0 and 7 py <0 since

—1+ (2K — H)AThy + /1 + Aty (2H + (H — 2K)2A ) > 0

when H > K. Thus, any equilibrium of (45) satisfies D = 0.
Substituting D = 0 into the right hand-side of the equation for
Hawks in (45), an equilibrium (H, 0) satisfies
=27 (1 + HATyy) + T (TH, + g + (H = 2 K)A(7TH, — Ty ) Thn) _
=27ty + (TTH, + TH, ) THH

V14 Aty (2H + (H =2 K)2Aty).  (E1)

We note that every solution H of the above equation must sat-
isfy

=27y (1 + HAtyy) + ‘L’HH(JTHD + Ths + (H-2 K))\.(JTHO — JTHS)‘L'HH) -

0.
=27ty + (Th, + TH, ) THH

(E.2)
Solving (E.1) by squaring both sides leads to two expressions

2 KAQwhy — mtun (7w, + 3704,) Tuu + 274,704, Ty ) + 70w, Ctun — (7T, + 71’:-1;)1’:-1:-1)i

H.
* 2A T, Thh (TTH, THH — 27ThHy)

Qryy — Ty, + 7)) Ta)/ 2 KAatyy + 7y, )2 — 4 KATty, 7Ty, Ty
2A Ty, ThH (TTH, THH — 2TTHYH) ’

(E3)

Using Mathematica (with assumptions K>0, A >0, tyy>0,
Ty, < 0, Ty, > 0, mp, < 0, mp, > 0, see Appendix F) we show that
condition (E.2) evaluated at H_ cannot hold when H_ > K and so
(H,D) = (H-,0) is not an equilibrium of (45). Hy is the only so-
lution that satisfies both conditions (provided we assume 2wy #
THo THH )-

Moreover, if D =0 in the right-hand side of (45), then dH/dt is
positive when H =K and tends to minus infinity as the number

of Hawks increases to infinity (because 7y, < 0). Thus, the equilib-
rium (H,, 0) is globally asymptotically stable for Example 3.

Appendix F. Mathematica notebook

This appendix contains Mathematica notebook with symbolic
calculations used in the text.
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