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Abstract

Community organisation permeates both social and biological complex systems. To study
its interplay with behaviour emergence, we model mobile structured populations with multi-
player interactions. We derive general analytical methods for evolutionary dynamics under
high home fidelity when populations self-organise into networks of asymptotically isolated
communities. In this limit, community organisation dominates over the network structure
and emerging behaviour is independent of network topology. We obtain the rules of multi-
player cooperation in networks of communities for different types of social dilemmas. The
success of cooperation is a result of the benefits shared among communal cooperators out-
performing the benefits reaped by defectors in mixed communities. Under weak selection,
cooperation can evolve and be stable for any size (Q) and number (M) of communities if the
reward-to-cost ratio (V/K) of public goods is higher than a critical value. Community organi-
sation is a solid mechanism for sustaining the evolution of cooperation under public goods
dilemmas, particularly when populations are organised into a higher number of smaller com-
munities. Contrary to public goods dilemmas relating to production, the multiplayer Hawk-
Dove (HD) dilemma is a commons dilemma focusing on the fair consumption of preexisting
resources. This game yields mixed results but tends to favour cooperation under larger com-
munities, highlighting that the two types of social dilemmas might lead to solid differences in
the behaviour adopted under community structure.

Author summary

Human and animal behaviour is strongly influenced by the structure of their social inter-
actions. The interaction networks that characterise these social systems are diverse, but
among them community structure can be often found. This work focuses on the impact
of community organisation on the evolution of cooperative behaviour in the face of collec-
tive social dilemmas. The work shows that community organisation is a solid mechanism
for sustaining the evolution of cooperation under public goods dilemmas, particularly
when populations are organised into a larger number of smaller communities. However,
cooperation can evolve for any size and number of communities under all public goods
dilemmas considered. The success of cooperation is a result of the benefits shared among
communal cooperators outperforming the benefits reaped by defectors in mixed
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communities. The size and number of communities is much more important in determin-
ing the evolution of cooperation than the way they are connected to other communities.
These results have significant implications for the study of animal and human social
behaviour, metapopulation dynamics, and general dynamics on social interaction
networks.

1 Introduction

Understanding how individuals organise into social communities is of interest to various
research fields due their ubiquitous presence in social systems. This is shown by the study of
networks of friendships, academic collaborations, individual interests, online discourse, and
political affiliation, among other social interaction systems [1-4]. Its organisation occurs down
to the smallest scale of human societies, which has motivated looking at the small interaction
groups in which we partake as a core configuration of our social psychology [5]. This has been
further supported by experimental studies showing that small groups, and their limit of dyadic
interactions, constitute most of our social encounters [6]. Animal groups often organise them-
selves into social communities as well [7]. Their formation can be motivated by the fragmenta-
tion of habitats, and its subsequent impact on ecological networks has led to the study of
evolution in metapopulations [8, 9]. Even in the presence of migration fluxes involving roam-
ing great distances, animals may maintain the same community and social ties, either by col-
lectively coordinating their movements [10, 11], or by coming back to the same territorial
patches where they once settled [12-14].

The organisation of individuals into social communities significantly influences their
behaviour with one another, particularly when facing social dilemmas. Social dilemmas
embody the conflict between social and individual interests, often framed as a choice one has
to make between cooperating and defecting, the dynamics of which have been extensively
modelled using evolutionary game theory. Incorporating community structure into these
models has thus far entailed considering events of two different natures: within-community
reproduction and between-community migration. These models are typically referred to as
metapopulation dynamics, a classification of which has been performed in [15]. The distinct
nature of between-community events has been further emphasised by considering commu-
nity-level events, such as group reproduction [16] or group splitting [17, 18], which involve
the replacement of entire groups either by other groups or by single individuals. Others have
considered different intensities of selection acting on within- and between-community events
[19, 20]. Some of these modelling features suggest inspiration from multilevel selection to dif-
ferent degrees, which we intentionally avoid in our current work. Although these approaches
lead to the evolution of pairwise cooperation, they may rely on the distinct nature of between-
community events to do so, or even on additional mechanisms present such as punishment
strategies [19].

Furthermore, metapopulation models generally assume that communities are connected to
each other in the same way, with few exceptions to this [16] as is pointed out in [21]. However,
other features of social interaction networks have been shown to have a strong interplay with
the evolution of cooperation in pairwise dilemmas. These include low average degree [22],
small-world characteristics [23], high link heterogeneity [24], and strong pair ties [25]. Some
of these effects may be sensitive to the evolutionary dynamics considered [22, 26], although the
qualitative differences have been shown to vanish under a generalisation of the dynamics [27].
The extension of these population structure models to multiplayer interactions is not trivial
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and considering only lower-order networks with dyadic interactions is often insufficient to
represent them [28]. Here, we will focus on one model of multiplayer interactions where both
network and community structure are conveniently integrated.

The framework introduced in its general form in [29] offers a novel approach to multi-
player social dilemmas, where interacting groups of individuals emerge from their simulta-
neous presence on the nodes of a spatial network. The model operates under the minimal
assumption that typical evolutionary dynamics on graphs, such as birth-death, death-birth
or link dynamics [26, 30], act between any two individuals in the population depending on
their frequency of interaction within the same group. Various movement models have been
explored so far, an overview of which is provided in [31]. Movement contingent on satisfac-
tion with past interactions sustains the co-evolution of cooperation and assortative behav-
iour, especially under complete networks [32, 33] and for several evolutionary dynamics
[34]. Mobility costs are essential to determine whether cooperative behaviour emerges [34],
parallel to what is reported from more realistic spatial social dilemmas [35]. Alternatively,
the territorial raider model in the form introduced later in this paper has been used to study
the fully independent movement of individuals around their home nodes, governed by one
single parameter, the individuals’ home fidelity. This model has revealed more limited pros-
pects for the evolution of cooperation within small networks [36], small fully connected
communities [26], and intermediate-sized complex networks with diverse structural proper-
ties [37, 38].

We propose the use of this fully independent movement model to study evolutionary
dynamics in network- and community-structured populations with multiplayer interac-
tions. Our focus centres on the limit of high home fidelity, where communities exhibit
asymptotically low mobility. In section 3.1, we derive general analytical methods for the
dynamics in this limit. We conclude that the organisation of the population into a network
of communities uniquely influences the evolutionary dynamics through the number and
size of the communities, rather than through the way communities are connected. Some
dynamics amplify within-community selection and others increment between-community
events. In section 3.2, we show that the balance between the two types of events determines
whether cooperation evolves, and we obtain their contributions to fixation probabilities
under weak selection for several social dilemmas. In section 3.3, we use this balance to
derive the rules of multiplayer cooperation and compare them among social dilemmas. In
section 3.4, we analyse in detail one particular game, the Charitable Prisoner’s Dilemma,
and draw a comparison with some of the results obtained in the widely explored pairwise
donation game. In section 4, we connect our findings to the relevant literature on multi-
player social dilemmas, metapopulation dynamics, and mobile structured populations.
Once again showcasing its versatility, this framework enabled the exploration of network
and community structure, thereby revealing the high potential for the evolution of coopera-
tion across diverse social dilemmas.

2 The model

The general framework introduced in [29] has been used to study the interplay between popu-
lation structure, movement and multiplayer interactions. Here, we focus on the territorial
raider model, a model of fully independent movement, which was generalised in [26] to
account for subpopulations or, as we will refer to them, communities. We start by defining
structure and the movement rules of this model. We then revisit the general approach to social
dilemmas outlined in [39], and finish by presenting the set of evolutionary dynamics defined
in [26].
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2.1 Population structure and movement

A population is composed of N individuals I,, = I, . . ., Iy. Individuals are positioned on a spa-
tial network with M places P,,, = Py, . . ., Py, which has a set of edges connecting them. Even
though the terms graph and network are often used interchangeably in the literature, here we
follow the same terminology used in [34, 37]. The term graph will only be used for the underly-
ing evolutionary graph representing the replacement structure between individuals, and net-
work will be used to refer to the network of places.

Under fully independent movement models, the position of each individual is independent
both of where they were previously and of where other individuals will be [29]. Therefore, the
probability that an individual I, is in place P, is generally defined by p,,,,. Under the territorial
raider model, each individual has an assigned home node in the network, and the probability
distribution of their positions is defined as the following:

h/(h+d,), n=m,
Pom =4 1/(h+d,), n7# m and vertices n,m connected, (1)

0, otherwise,

where £ is the home fidelity parameter, and d,, is the degree of the home node of individual I,.
This movement model is governed by a single parameter & yet allows for different movement
propensities governed by the opportunities available to each individual, reflecting basic charac-
teristics of local limited mobility present in animal populations based on territorial behaviour
[12-14] as well as human social systems. Alternative models could be used, some of which
would lead to exactly the same results, as it is briefly discussed in the next section. We use the
version of the territorial raider model under which each node of the network is home to a com-
munity of Q individuals, and thus M denotes the number of communities and N = MQ. The
probability distribution of positions under the territorial raider model is represented in Fig 1.
Communities have been referred to in previous models as subpopulations [26] or demes [20].
The below definitions are valid for any distribution p,,,,, of a fully independent movement model.
A group of individuals G has probability y(, G) of meeting in node P,,,, which is given by:

1(m, @) = 12w [(1 = py)- 2)

i€g j¢g

The fitness of each individual I, is obtained through the weighted average of the payoffs
R, ¢ received in each place P, and each group composition G they can be in. We further
introduce w, the intensity of selection as defined in [40], which measures the extension to
which the outcomes of the game contribute to the fitness of individuals:

E,=1—w+w) > 7(mG)R,,q (3)

m Gineg

We bring attention to an alternative notation used in the literature, where a background
payoff defined as R is introduced. This notation is used under movement models such as those
from [26, 33, 34, 36]. The background payoft is typically included within the effective reward
received in each interaction, which we denote R, ; = R, , ; + R. This leads to the following

adjustments to the fitness of individuals:

B =33 1(m R, (4)

m Gneg
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K\’T/ @
Fig 1. Representation of a small community network under the territorial raider model. At each time step,
individuals initiate their movement from their home node, and can either remain there or move to any of the adjacent

nodes, returning to their home node prior to the next time step. In this figure, we represent the resulting probability
distribution for the community in the centre of the network.

https://doi.org/10.1371/journal.pcbi.1012388.g001

We will make use of the first notation where the intensity of selection is used, as this is
revealed to be more practical when inspecting the weak selection limit. Nonetheless, the sec-
—w

ond approach leads to a simple rescaling of the fitness ' = L F when R = =*, which has no

w

impact on the evolutionary dynamics introduced later.

2.2 Multiplayer social dilemmas

We consider the multiplayer social dilemmas studied in [39]. Individuals have two strategies
available to them: to cooperate (C) or to defect (D). In these dilemmas, payoffs can be repre-
sented as R, ; = RY, (= R”,) when the focal individual I,, is a cooperator (defector), as they
are determined by the type of the focal individual and the number of cooperators ¢, and defec-
tors d in their current group. We present the payoffs received under each social dilemma in
Table 1, where V represents the value of the reward shared, and K the cost paid by individuals
in the group. In public goods dilemmas, cooperation involves the production of a reward V at
a cost K, which is consumed by individuals within the group. In contrast, commons dilemmas
typically represent scenarios with preexisting resources, where cooperation can involve,
among other things, the sustainable consumption of the resources. In the HD dilemma, the
only commons dilemma we study here, cooperators evenly share the reward V, while defectors
attempt to consume it entirely, either winning it occasionally or losing it to other defectors
while incurring a cost K.

2.3 Evolutionary dynamics

We follow an approach grounded on evolutionary graph theory [46]. The population has a
corresponding evolutionary graph represented by the adjacency matrix W = (w;), with w;;
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Table 1. Payoffs obtained by a focal cooperator RS, or a focal defector R?, in a group with ¢ cooperators and d
defectors playing a social dilemma. Social dilemmas are referred to in the text by the acronyms introduced in this

table.
Multiplayer Game R¢, R?,
Charitable Prisoner’s Dilemma (CPD) [36] c—1 _ ¢ V ¢>0
VoK e g
K c=1 0 c=0
Prisoner’s Dilemma (PD) [41] ¢ v_ ¢
V-K
c+d c+d
Prisoner’s Dilemma with Variable production function | V et
(PDV) [42] c+dZ o"—K,w>0 T @, w>0
Volunteer’s Dilemma (VD) [43] V-K V ¢>0
0 ¢c=0
Snowdrift (S) [42] v_ K V ¢>0
¢ 0 c=
Threshold Volunteer’s Dilemma (TVD) [42] V—K ¢>1L V ¢>L
—K c<L 0 c<L
Stag Hunt (SH) [44] — V-K ¢>L ¢ V ¢>1L
c+ d c+d
—-K c<L 0 c<L
i 1% 14
Fixed Stag Hunt (FSH) [44] “K ¢>1L c>L
c+d c+d
—-K c<L 0 c<L
Threshold Snowdrift (TS) [45] v_ K > 1L V ¢>L
< ¢ 0 c<L
- I c<L
Hawk-Dove (HD) [29] v d=0 V—(d-1K
c - d
0 d>0

https://doi.org/10.1371/journal.pcbi.1012388.t001

denoting the replacement weights which determine the likelihood of individual I; replacing I;
in an evolutionary step. In contrast with the original formulation of evolutionary pairwise
games on graphs, the interaction structure between individuals is an emerging feature of the
model. We follow the procedure used in [26], under which replacement weights are deter-
mined by the fraction of time any two individuals spend interacting within the network. They
spend their time equally with each of the other individuals in their groups, and time spent
alone contributes to their self-replacement weights. This leads to the following definition:

r(m,G) ..
;g;ﬂg‘ , i# ],
w; = (5)

S a(m i), =i

m

Let us consider that the population goes through an evolutionary process operating on the
strategies C and D used by each individual. This is modelled in discrete evolutionary steps,
during which individuals may update their strategies. The probability that, at a given step, the
strategy of an individual J; replaces that of I; is denoted by the replacement probability ;. This
probability may depend in different ways on the fitness of individuals, thereby incorporating
selection into the process, and on the replacement weights, thereby capturing their interaction
structure. We recall the dynamics outlined in [26], and their respective replacement
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Table 2. Definition of birth probabilities (b;;) and death probabilities (d(;;), or of final replacement probability
(), for six distinct evolutionary dynamics. The indices denote the individuals I; giving birth and I; dying. In
instances where the replacement probability is not explicitly stated, it can be derived by multiplying the respective birth

and death probabilities.
Evolutionary dynamics and replacement probabilities
BDB F, Wy DBD FL w,
h,:zp,ij:—z d=="—b =="
w, 7 i
nt'n 1Win TR Y w,
DBB w;,F BDD w,F
d~=1N,bv.:# = - 97
! ! ! annan hl I/N’ dij nwinF;l
LB w;F,; LD w. F !
Ty = ="
D DT o8 DDA

https://doi.org/10.1371/journal.pchi.1012388.t002

probabilities 7;; are summarised in Table 2. The evolutionary dynamics are classified as birth-
death (BD) if an individual is first selected for birth and then another one for death; death-
birth (DB) if the reverse order of events is considered; and link (L) if an edge of the evolution-
ary graph is directly chosen. Under each of these, selection can act either on the birth (B) or
the death (D) event. Evolutionary dynamics are thus referred to by the combination of these
two codes, as is shown in Table 2.

We consider both the fitness and replacement weights of individuals to be computed
assuming a large sample of random interactions within their environment, as has been widely
done both in pairwise games [22-24], and multiplayer games [26, 34, 47]. Alternatively, these
could have been calculated using different sampling assumptions, such as considering those
two quantities to be obtained from two independent single interaction samples [37, 38]. In
those cases, there might be other effects emerging if the sampling used to calculate both quan-
tities is correlated, as was shown in [48].

The probability of fixation for a single mutant cooperator (defector) in a population with
the opposing strategy is defined as p© (p"). Selection is said to favour the fixation of coopera-
tion if p > p"*"*., and it is said to favour its evolution if p© > p"*“"* > pP [40]. The neutral
fixation probability is equal to p"e’”ml =1/N = 1/(MQ) [49]. Fixation probabilities can be calcu-
lated under the general fully independent movement models resorting to the proceeding
explained in [26, 36]. However, in the results section, we concentrate on limits where fixation
probabilities assume closed-form expressions.

3 Results

Let us consider the previously introduced model in the limit of high home fidelity h — co. A
description of the free parameters of the model and the limits considered is provided in section 1
of S1 File, particularly in Table A. In section 3.1, we describe the evolutionary process arising
from this limit across the six introduced dynamics and derive exact expressions for single mutant
fixation probabilities under any network of communities. The analysis in this section is substan-
tiated by the work in section 2 of S1 File. In section 3.2, we analyse the expansion of fixation
probabilities within the additional limit of weak selection, which unveils simple contributions of
within-community fixation processes and between-community replacement events. We further
analyse these contributions under the general social dilemma section. These findings are comple-
mented by the content in section 3 of S1 File. In section 3.3, we present the simple rules obtained
for the evolution of cooperation under the general multiplayer social dilemmas, when three suc-
cessive limits are considered: high home fidelity, weak selection and large networks of communi-
ties. In section 4 of S1 File, we analyse the extent to which these rules are valid outside of the
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limits of large networks and weak selection. Moreover, we contextualise the particular case of the
CPD with respect to prior literature on pairwise dilemmas in section 3.4.

3.1 Evolutionary dynamics under high home fidelity

Consider a connected network comprising M places and an arbitrary topology. Each place is
home to a community of size Q with movement following the territorial raider model (see Fig
1). In the asymptotic limit of high home fidelity i — oo, individuals interact mostly within
their community. The fitness of each individual depends mainly on the rewards R, and R?,
received within each community of ¢ cooperators and d defectors, higher-order terms on k™"
dependent on the composition of the remaining communities. We define the asymptotic value
of the fitness of a focal cooperator and defector as respectively the following:

fﬁl =1-w+ WRSd? (6)

f.)d:l—W+WRfd- (7)

In this limit, it is possible to obtain a closed-form expression for the fixation probability of a
single mutant. The fixation process under each of the six introduced dynamics corresponds to
a nested Moran process involving the fixation of a single mutant on its community and the fix-
ation of that community in the population. A part of this process is represented in Fig 2. The
probabilities obtained are presented in the next subsections (see section 2 of S1 File for more
information about how they were obtained).

3.1.1 Fixation probabilities under BDB, DBD, LB and LD dynamics. In the context of
high home fidelity, replacement events within the same community happen at an asymptoti-
cally larger rate than events between different communities. As such, fixation probabilities p©
and p” are obtained by multiplying the probability of the original mutant fixating within its
community, denoted as 7 or 7, by the probability of the community achieving fixation in the
whole population. We note that these probabilities are identical under the BDB, DBD, LB and
LD dynamics because the transition probability ratios that characterise the process are identi-
cal at any given state of the population.

Within-community fixation is equivalent to a frequency-dependent Moran process where
the fitness of individuals corresponds to its asymptotic value in isolated communities as
defined in Eqs 6 and 7. Fixation probabilities for cooperators and defectors are determined as

follows:
1
r¢ =
— j ch —c’ 8
1+ jQle - ,CQ (8)
c,Q—c
1
rP = .
1450 1] Je-aa 9)

ot fclz)—dd

Upon reaching a state with homogeneous communities, one of two state-changing events
may unfold. In one scenario, a cooperator replaces a defector from an adjacent community,
with probability proportional to its communal fitness f5 . Subsequently, the new cooperator
may fixate within that community with a probability of 7. Alternatively, a defector may
replace a cooperator from a different community, proportionally to f;,, and the new defector
may fixate within the new community with a probability of . The fixation process of one
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: 1 Between-community
: replacement

Within-community
fixation

Fig 2. Fixation process in a population of connected communities under the asymptotic limit of high home fidelity. For simplicity, let us consider the
scenario where one mutant cooperator emerges in a population of defectors. The new strategy will fixate within the community where it originated with a
probability of 7. The state attained has homogeneous communities and may change only through the occurrence of a between-community replacement.
This involves either a cooperator replacing a defector from an adjacent community or the reverse, with probabilities proportional to their respective
communal fitness f3, and f;7,. Each of those events may be followed by the within-community fixation of the new type, with respective probabilities “and
#P. If within-community fixation is unsuccessful, it will result in the restoration of the previous number of homogeneous communities of cooperators.
However, if within-community fixation is successful, it will respectively increase or decrease by one the number of communities of cooperators in the
network. The transition probability ratio I' (see Eq 10) between these two possible state transitions is constant and can be obtained from this diagram. The
represented probabilities are the same under BDB, DBD, LB and LD dynamics. Under DBB and BDD dynamics, within-community fixation probabilities
are computed from Eqs 15 and 16, and the transition probability ratio is obtained from Eq 17.

https://doi.org/10.1371/journal.pcbi.1012388.9002

community on the entire population is equivalent to a fixed fitness Moran process, where the
transition probability ratio is as follows (see a visual representation in Fig 2 and a formal deri-
vation in section 2.1 of S1 File):

_ fU?Q 7’

I = .
f(go"'c

(10)

Please note that the ratio between the two within-community fixation probabilities can be con-
sidered in its following simplified form [40, 50]:

e Q-1 4D
¢,Q—c
rC - Cfo ( )

c,

The fixation probability of a single mutant cooperator or defector in a population of the
opposing type is respectively the following:

hlirg pC = rC ' PMomn (12)

-1\ _ C.
(F )77‘ I_FM7
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1-r!

e (13)

lim p” = - B,,,,,(I) =
when T # 1. Otherwise, limy,_ pC =r“/M and lim,,_, pD =rP/M.

The high home fidelity limit reveals this nested Moran process characterised by frequency-
dependent fitness at the lower level and an equivalent fixed fitness of communities at the
higher level. This emerges naturally from a simple individual selection process which operates
within communities and between individuals of distinct communities with the frequency of
replacements coupled with how often individuals interact in the same group. We note that fix-
ation probabilities are independent of the topology of the network, i.e. the set of edges linking
the homes of different communities. The number of communities M, their size Q, and the
multiplayer game played by individuals are enough to determine the evolutionary outcome of
the process. The same results could be obtained from alternative movement models under the
limit of isolated communities of the same size, as discussed in S1 File. Given the general nature
of Eqs 12 and 13, they can be used to assess the viability of cooperation under social dilemmas
in any network of communities.

Social dilemmas are characterised by the conflict between cooperation as a socially optimal
strategy and defection as an individually optimal strategy [39, 51]. Given this definition, we
should expect the first to excel in between-community replacements and the second at within-
community fixation. The balance between these two factors is present at each step of the higher
level (community) fixation process, as is represented in Fig 2. Therefore, condition p© > p” is

met in the following circumstances:
C rD 1+ﬁ
Jao > (—> . (14)

foa re

This condition is more easily met when the size of the network is increased. Under
M — o0, it becomes equivalent to " < 1, further implying that p© > 1/N > p” and that there is
one and only one stable strategy. This shows that the definition of I" encapsulates the balance
between the socially and individually optimal strategies, and is enough to determine the out-
come of the evolutionary process under large networks.

3.1.2 Fixation probabilities under DBB and BDD dynamics. The DBB and BDD
dynamics lead to different quantitative results as transition probability ratios in the resulting
Markov chain are different from the previous four dynamics. Fixation probabilities are
obtained in a parallel way to the ones presented in 12 and 13, using the following corrected val-
ues of within-community fixation probabilities r“ and °, and transition probability ratios I':
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with Tppp/ppp denoting the total weight-fitness correction factors under those two dynamics,
which are positive as evident in their definition:

Tppp(c, d) = C'fcil""d'fc%a (18)

Typp(c,d) =d- c?i +c 'fcj,::i' (19)

There are two main distinctions between these equations and those derived in the previous
section for the remaining dynamics. On one side, both DBB and BDD amplify between-com-
munity replacement events, owing to the squaring of the communal fitness ratio in 17. At the
same time, they suppress within-community selection, as can be concluded from the addi-
tional coefficients multiplied by the fitness ratio in Eqs 15 and 16. The condition p© > p® leads

l(HL)
f 50 rgBB/BDD o
> > | ; (20)

to

0,Q "bBB/BDD

where the right-hand side is closer to 1 than that of Eq 14, thus benefiting cooperation.

3.2 Within- and between-community effects under weak selection

3.2.1 Fixation probabilities under weak selection. Further considering the weak selec-
tion limit w — 0, the fixation probabilities presented in section 3.1 can be expanded, leading to
the following equations (see section 3 of S1 File for more details):

1 w(l 1 . 1 . 1
o (1 AP (1 )0t (1) o° 21
P MQ+2{Q( M) +(+M> ( M) } 1)
where

A? =RS, —RP, = —A", (22)

or¢ 1 &
=5 =gx@-9 R = RO (23)

w—0 c=1

orP 1 &
6" = ™ = &Z(Q —d) [Rgfd‘d - Rg—d,d} : (24)

w—0 d=1

Eq 21 comprises three terms which are defined in Eqs 22-24. The term A“"” embodies the

contribution of between-community events and corresponds to the difference between payoffs
of communal cooperators and communal defectors. The sign of this term is determined by
which of the two strategies is socially optimal. The terms 6 and &° represent the contributions
originating from the within-community fixation process of cooperators and defectors, respec-
tively. Considering p” leads to the swapping of superscripts C and D on these three terms.

The expansion assumes a different form under the DBB and BDD dynamics, both of which
result in the following equation:

c w1 e __1 D\se _({__1 IR
g 05 ) (o2 g Ao o
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This reflects the aspects highlighted in the previous section about the impact of these
dynamics. We observe the amplification of between-community selection by a factor of 2, and
the suppression of within-community selection by a factor of 1 — 1/(Q — 1).

Each of the three contributing terms present in Eqs 21 and 25 shows a correction coefficient
related to the finiteness of the network, which naturally vanishes under M — oo. Increasing
the network size magnifies the relative impact of between-community replacement events on
the fixation probability. At the same time, it increases the impact of the within-community fix-
ation of residents but makes the within-community fixation of mutants relatively less signifi-
cant than it is in smaller networks. In the limiting case where there are only two communities
(M = 2), this last term exhibits a finite network correction coefficient three times larger than
that of the within-community fixation of residents. This is so because the fixation of the origi-
nal mutant in its community takes an increased importance in the overall process.

Increasing the size of communities decreases the impact of between-community contribu-
tions under both dynamics. Simultaneously, it amplifies the impact of within-community con-
tributions under DBB and BDD dynamics. From Eq 25, we conclude that under the smallest
communities (Q = 2), the expansion of fixation probabilities under DBB and BDD dynamics is
reduced to a single term depending on A“?, and within-community fixation terms vanish. In a
mixed subpopulation of one cooperator and one defector, both types have the same probability
of being chosen first and the resulting replacement event is then certain to occur. Therefore,
within-community fixation probabilities are equal to 1/2 for both types, regardless of the pay-
offs received by individuals. This remains true under stronger selection as was noted in [26].

3.2.2 General social dilemmas under weak selection. Consider the general social dilem-
mas defined in Table 1. We calculate the values of each of the three contributions A", 6 and
87 under all of the dilemmas introduced there, and present them in Table B of S1 File.

Under public goods dilemmas, the term A“? is positive when cooperation is the socially
optimal strategy. This happens when the reward for cooperating is sufficiently high, provided
communities have a size capable of producing the reward. In the same dilemmas, the terms 6
and 8" exhibit negative and positive signs, respectively, due to defection being a dominant
strategy.

Under the HD dilemma, the contribution A“” remains positive regardless of reward value.
The contributions 5 and 6 can be negative and positive for high V/K, positive and negative
for low V/K, and both positive for intermediate V/K when Q > 2. These patterns reflect that
cooperation is always socially optimal in this dilemma, while within a fixed group it maintains
anti-coordination properties.

We observe that cooperation can evolve under sufficiently large V/K in public goods games,
irrespective of the number of communities M, their size Q (provided it allows them to produce
areward), and how they are connected. This is true even in the limiting case of two arbitrarily
large communities. It is so because the contribution of between-community events can be
made arbitrarily large by increasing V, while the remaining contributions remain constant.
Although the CPD does not meet these criteria, we demonstrate this conclusion remains valid
in the more detailed analysis in section 3.4. Similarly, under the HD dilemma, cooperation can
evolve under sufficiently low V/K irrespective of the number and size of communities, and
their connections.

Moreover, based on Eqs 21 and 25 and the particular values their terms hold under each
public goods dilemma, we conclude in section 4.1 of S1 File that decreasing the size of the net-
work has a detrimental effect to cooperation under all public goods dilemmas. Smaller net-
works systematically lead to stricter conditions for the evolution of cooperation in public
goods dilemmas. Conversely, no consistent trend emerges in the HD dilemma.
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Summing the expansions obtained for the fixation probabilities of cooperators and defec-
tors, we arrive at the following equation:

cyopa 2 W.sc | sD

pC+p ~ 0 +M(5 +07), (26)
where, under the DBB/BDD dynamics, an additional coefficient 1 — 1/(Q — 1) is included in
the second term on the right-hand side. It is worth noting that when the difference between
the payoffs of cooperators and defectors in the same group is constant, the contributions of the
within-community fixation processes of cooperators and defectors to Eqs 21 and 25 are sym-
metric, i.e. 5° = —6°. For such dilemmas, there is always one and only one stable strategy
under weak selection. This is true for all social dilemmas discussed here, except for the S and
the TS with Q > L + 1, where bi-stability is possible (6° + 6 < 0), and the HD dilemma,
which allows for mutual fixation (8¢ + 8° > 0). As established in section 3.1, under M — 0o
there is one and only one stable strategy, determined by the value of I'. This is in agreement
with the fact that, for the remaining dilemmas, the second term on the right-hand side of Eq
26 vanishes under large networks. We conclude that both weak selection and a large number
of communities often lead to simple dominance cases. Based on these findings, we emphasise
that in all public goods dilemmas, if the fixation of cooperators is favoured under weak selec-
tion or large networks, then the fixation of defectors won’t be (and vice versa). In the next sec-
tion, we will extend our analysis, systematically presenting the conditions under which
cooperation evolves for all social dilemmas.

3.3 The rules of cooperation under general multiplayer social dilemmas

n this section, we further extend our analysis of general multiplayer social dilemmas. Cooper-
In th t furth tend ly fg 1 multiplay 1 dil Coop
ation evolves successfully, i.e. p© > p"™ > pP, for larger numbers of communities if

A > Q" — o). (27)

This rule is obtained considering that the first-order term of the weak selection expansion in
Eq 21 has to be positive. The equation above is valid under the BDB/DBD/LB/LD dynamics,
whereas for the DBB/BDD dynamics, a multiplying factor (1/2)(1 — 1/(Q — 1)) is added to the
right-hand side of the equation.

We obtain the condition under which cooperation evolves for each of the social dilemmas
studied here, for all community sizes Q and the six evolutionary dynamics, and present them
in Table 3. The contributions AP, § and 6® for each social dilemma are presented in Table B
of S1 File. Cooperation can evolve under all of the social dilemmas approached for at least
some of the explored dynamics. We opted to show the rules obtained under a high number of
communities to allow a systematic analysis of the dilemmas, as obtaining them for arbitrary
values of M was attainable but often intricate. These limits were considered in a particular
order: first h — oo, then w — 0, and finally M — oo. The order of these limits is relevant,
given that different orders can lead to distinct fixation probability expansions and conditions
for the evolution of cooperation [50], as well as generate or erase surprising finite population
effects [52]. In section 4.2 of S1 File, we analyse the validity of the simple rules presented here
when these limits are relaxed.

The results presented in this table suggest that social dilemmas split into distinct groups.
Non-threshold public goods dilemmas such as the PD, the VD, the S, and the PDV allow coop-
erators to evolve under any community size if the reward-to-cost ratio V/K surpasses a critical
value dependent on Q. This value is the same under the PD and the VD, but lower under the S
and the convex PDV (w > 1), and higher under the concave PDV (w < 1). The CPD presents a
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Table 3. Rules for the evolution of multiplayer cooperation under networks of communities. We assume a large number M of communities and that they are composed
of at least two individuals (Q > 2). These conditions guarantee that p” > p"*™* > p”. We denote the harmonic series as H, = 3_2 i"'. Under Q = 1, the derived condi-
tions are the following: cooperation never evolves under the CPD, TVD, SH, FSH, and TS (assuming that L > 2), cooperation evolves for V/K > 1 under the PD, PDV, VD
and S, and both strategies are neutral under the HD. These results are valid under arbitrary values of w and M, and they are the same under all six dynamics.

Multiplayer Game

CPD
PD, VD

PDV

TVD, SH

FSH

TS

HD

https://doi.org/10.1371/journal.pchi.1012388.t003
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distinct landscape, where cooperation only evolves under the DBB and BDD dynamics. The
critical value of the reward-to-cost ratio in this dilemma is the lowest of all non-threshold pub-
lic goods games. We will analyse this dilemma in the following section.

Threshold dilemmas such as the TVD, the SH, the FSH, and the TS have a critical value of
the reward-to-cost ratio, above which cooperation evolves, only if the size of communities is at
least of the same size as the public goods production threshold (Q > L). Otherwise, coopera-
tion can never evolve regardless of the value of V/K. The TVD and the SH lead to the same
conditions, which coincide with the PD and the VD when Q > L. The TS leads to lower critical
values of the reward-to-cost ratio, and the FSH leads to higher values. We further note that the
critical values obtained under the FSH when Q > L are simply the ones obtained under the
PDV with w — 0. Critical values under threshold games generally don’t depend on L, although
their existence does. The exception to this is the TS dilemma, under which a larger production
threshold decreases the critical value of the reward-to-cost ratio when communities are large
enough to produce rewards.

The HD dilemma, which unlike the others is a commons dilemma, behaves distinctively
from all of the remaining dilemmas. The reward-to-cost ratio has to be lower than a critical
value for cooperation to evolve. It is clear that in this case, high rewards are detrimental to the
evolution of cooperation.

We note that the critical value of the reward-to-cost ratio under public goods dilemmas
always increases with the size of communities and regardless of the used evolutionary dynam-
ics. This allows us to provide the visual representation from Fig 3 with the areas under which
cooperation evolves for community sizes up to a given value. Additionally, as mentioned in
section 3.2, considering lower values of M always leads to stricter conditions for the evolution
of cooperation. This reinforces the conclusion that populations organised into large networks
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Fig 3. Regions under which cooperation evolves for each public goods dilemma. Each coloured region covers the values of the reward-to-cost ratio, i.e.
V/K, under which cooperation evolves for a given set of community size values which are stated in the legend. These regions are obtained from the rules for
the evolution of cooperation presented in Table 3. Under low enough values of V/K, all dilemmas have uncoloured regions, as no community size allows

the evolution of cooperation. We opted for not showing the areas of the S and the TSD dilemmas with higher values of V/K (starting from the ellipsis), as
coloured regions quickly decreased in size: at V/K = 3, cooperation evolves for any Q < 231 under the S and Q < 377 under the TS when L = 2.

https://doi.org/10.1371/journal.pcbi.1012388.g003

of small communities lead to a larger region of the parameter space under which cooperation
evolves. This is so because cooperators hold an advantage in between-community reproduc-
tion events (intensified under large M), but they are disadvantaged in within-community fixa-
tion processes (minimised under small Q).

In this context, the HD dilemma has key differences compared with the public goods dilem-
mas. Under this game, cooperators hold an advantage in between-community reproduction
events for any payoff parameters. Regarding within-community fixation processes, defectors
hold an advantage in small communities, but cooperators are the ones doing so in larger com-
munities. However, there is a second overlapping effect which is described in section 3.2:
increasing the size of communities decreases the impact of between-community reproduction
and increases the impact of within-community fixation. Under the BDB dynamics, the second
effect is not strong enough and the first effect dominates: communities with larger size always
lead to higher critical values below which cooperators fixate, therefore benefiting them. How-
ever, under the DBB/BDD dynamics, both effects interplay and each dominates at a different
scale of community sizes. Cooperators always evolve when Q = 2 because fixation depends
only on between-community reproduction. When increasing the community size to Q = 3, 4,
the emerging critical values below which cooperation evolves decrease with community size
because of the increased importance of within-community fixation beneficial to defectors in
those community sizes. However, for larger values of Q > 5, cooperation evolves for larger
regions of V/K when increasing Q because within-community fixation starts benefiting
cooperators.

Comparing the critical values obtained between the different evolutionary dynamics, we
note that the DBB and BDD dynamics always extend the values of V/K for which cooperation
successfully fixates when compared to the remaining dynamics. They therefore have lower
critical values in all public goods dilemmas and higher critical values in the HD dilemma. We
note the extreme case of the CPD, under which cooperators never evolve under the BDB and
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equivalent dynamics, but find an evolutionary way under the DBB and BDD dynamics. These
results can be explained by the fact that these dynamics when compared to the remaining,
amplify the impact of between-community replacement terms (where cooperators succeed rel-
ative to defectors), and suppress within-community selection terms (where defectors succeed).

3.4 The Charitable Prisoner’s Dilemma and pairwise cooperation

The CPD is a particular game of interest among public goods dilemmas. Under the CPD,
cooperators do not benefit from their own contributions to public goods. This assures not only
that individuals have equal gains from switching, but also that the gains are the same for all
group sizes. In other words, the cost K is the effective cost that a cooperator pays for not defect-
ing, regardless of group composition and size. This game is thus a social dilemma regardless of
how large the reward is and the size of the interacting group [39]. Other games have equal
gains from switching, but the gains vary with group size. One such game is the PD, which was
introduced in [41], under which the cost of cooperating is K — V/Q, and therefore may not
even present a social dilemma under some payoff choices and group sizes [39].

Table 3 shows that cooperation evolves in the CPD when V/K > (Q — 1). Given our particu-
lar interest in it, we present here the condition for the evolution of cooperation obtained
under the CPD when a finite number of communities M is considered:

2
MQ

Q-1
MQ

V/K>(Q—1)- (28)

This rule quantifies the detrimental effect that considering a lower number of larger com-
munities (lower M and higher Q) has on the evolution of cooperation. At the same time, it
materialises a fundamental result: cooperation can evolve provided rewards are high enough,
for any given community size and number, and regardless of the connections between them.
This is a remarkably general result that works for the smallest networks of two communities
under which cooperation evolves if V/K > (Q - 1)

A parallel result was attained in [25] by considering the pairwise donation game in an evo-
lutionary graph which is split into M cliques of Q individuals each. Individuals within the
same clique are considered to have unit-weighted edges and there is an arbitrary set of infini-
tesimal edges between individuals of different cliques. The vanishing edges act to isolate the
individuals within each clique, guaranteeing that cooperation can always evolve in the pairwise
donation game if V/K is high enough.

The rules obtained under the CPD are parallel not only to the clique structures explored in
[25] but also to the results obtained in [22] for large regular networks. They showed that coop-
eration can evolve under the DBB dynamics if the reward-to-cost ratio is larger than the aver-
age number of neighbours each individual has on an interaction network. We note that in our
model and the particular limit of large home fidelity, each individual regularly interacts with Q
— 1 others and that this is exactly the critical value of the reward-to-cost ratio under the DBB
dynamics. However, the results obtained here for networked communities allow cooperation
to evolve under the smallest networks when the corrected rule presented in Eq 28 is met, thus
going beyond the large network assumption.

At the same time, when interacting via the CPD, cooperators can never evolve if the evolu-
tionary dynamics considered are the BDB/DBD/LB/LD dynamics, as shown in section 2.2 of
S1 File for arbitrary values of intensity of selection and number of communities. This had been
already hypothesised in [26] for the general formulation of the territorial raider movement
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model, similar to what was observed in previous evolutionary graph theory models [22]. How-
ever, we note that this feature of the BDB dynamics is a singular case when stochastic combina-
tions of different types of dynamics are considered, as was shown in [27].

The CPD can be seen as a multiplayer extension of the pairwise donation game and as such,
the two games may lead to analogous results. More generally, the exploration of higher-order
interactions leads to different interacting structures and evolutionary outcomes [28], even in
other cases where the multiplayer game considered is a natural extension of its pairwise ver-
sion. However, in the particular limit studied here, individuals always interact within their
own communities which are all of the same size. Therefore, the average payoffs obtained in a
well-mixed community playing the pairwise donation game are the same as the payofts
obtained in a group of fixed size repeatedly playing the CPD. This is no longer the case when
lower home fidelity values are considered, and new higher-order differences are expected to
arise in that context.

4 Discussion

In the present work, we use the territorial raider model previously approached in [26, 36-38],
a fully independent movement model which is described by one single parameter, the home
fidelity of individuals. The general framework originally proposed in [29] can be thought of as
a natural extension of evolutionary graph theory to multiplayer interactions, under which
replacement events between individuals in the population occur proportionally to how often
they interact. We focus on the limit of high home fidelity, under which individuals interact
mostly within their community with the rare occurrence of cross-community group interac-
tions. We derive the evolutionary dynamics in this limit, which is revealed to be a nested
Moran process resembling metapopulation models where migration is coupled with selection
(these are classified in [15]), but is asymptotically rare as is considered in [20]. Therefore, we
show that metapopulation dynamics of multiplayer interactions can be derived from basic evo-
lutionary graph theory assumptions. This derivation is achieved without considering between-
community events to be of a different nature through the introduction of migration [15, 20],
group splitting and replacement [16-18], or two or more levels of intensity of selection [19,
20]. The same results could be obtained from alternative movement models under the limit of
isolated communities of the same size, as discussed in S1 File.

In this context, we show that whether a strategy evolves or not depends on the advantage it
holds against other strategies in two contexts: when in homogeneous groups and when in
within-community fixation processes. Multiplayer social dilemmas involve the existence of a
conflict between cooperating as a socially optimal strategy and defecting as an individually
optimal strategy [39, 51]. Therefore, we obtain a general condition for the evolution of cooper-
ation which translates into a simple balance between its advantages in homogeneous commu-
nities and its disadvantages over within-community fixation processes.

Applying this balance to the multiplayer social dilemmas explored in [39], we obtain simple
rules for the evolution of multiplayer cooperation in community-structured populations.
These depend on the reward-to-cost ratio, and the number and size of communities. Coopera-
tion evolves under all social dilemmas for any given number of communities, as long as there
are at least two, that they are large enough to produce rewards (when applicable), and that the
rewards are high enough in public goods dilemmas or low enough in the HD dilemma (a com-
mons dilemma focused on the fair consumption of preexisting resources). In public goods
dilemmas, cooperation evolves more easily when the costs of production are shared (the S and
the TS dilemmas—see [24, 42] for an account of this), when the reward production function is
supralinear (the PDV), and when individuals benefit from their own production (all public
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goods dilemmas, except for the CPD). However, finding that cooperation can evolve under the
CPD in any community-structured population was remarkable by itself, given that this
dilemma does not have any of the above characteristics and extends some of the strictest prop-
erties of the pairwise donation game to larger group sizes. Other characteristics of public
goods dilemmas could be assessed in the future by considering asymmetric reward contribu-
tions and productivities (quantified as each individual’s reward-to-cost ratio) [53], or even dif-
ferent mobility distributions and costs [35].

Moreover, the general results derived are not restricted to public goods dilemmas. The mul-
tiplayer HD game revealed an entirely different landscape when compared to its pairwise
equivalent, the S dilemma. The differences between the two types of multiplayer dilemmas
highlight that the considerations taken when extending pairwise games to higher-order inter-
actions may reveal fundamental differences between them. These differences materialise here
in the distinction between dilemmas focused on production (public goods dilemmas) and fair
consumption of a preexisting resource (commons dilemmas). Furthermore, the use of the gen-
eral rule obtained for the evolution of cooperation can be extended to the study of systems
where evolutionary games have been employed, such as in AI monitoring [54], disease evolu-
tion and spread [55], environmental governance [56], and healthcare investment [57].

Remarkably, the derived dynamics did not depend on how communities were connected,
with the community effects overwriting other potentially overlapping structural effects. It was
observed in [36] that high home fidelity led to a simple fixed fitness Moran process indepen-
dent of topology in the territorial raider model with Q = 1, which is simply a particular case of
the more general nested Moran process we derived in this work. For general home fidelity val-
ues, it was shown in [37, 38] that temperature and average group size can be good predictors
of fixation probabilities in the HD dilemma and the CPD, for a wide selection of topologies.
Interpreted in that light, our results show that when strict subpopulation temperature as
defined in [26] is zero and the size of the network of places is fixed, the success of the fixation
process is determined by the size of communities and independent of other topological fea-
tures. This is in contrast with the models under which network topology plays a key role, such
as evolutionary games on static pairwise graphs [22, 23, 25] and satisfaction-dependent move-
ment models [33, 34].

Public goods dilemmas consistently lead to the evolution of cooperation down to lower val-
ues of the reward-to-cost ratio when a larger number of smaller communities is considered.
This is in line with what is observed in alternative community and deme models [20, 26, 58],
and multilevel selection models [16-18]. The only exception to this is presented by multilevel
public goods games when punishment is introduced, in which case larger communities are
beneficial for cooperation [19]. It was shown in [25] that networks of isolated clusters interact-
ing via the pairwise donation game also favour cooperation more frequently under smaller
clusters and larger networks. Furthermore, strong isolated pairs were shown to be a strong pre-
dictor of cooperation in any evolutionary graphs [25]. Therefore, fragmentation into smaller
social communities or groups might be one of several key mechanisms at the origin of cooper-
ative behaviour observed around us. This is further supported by experimental studies which
show that, in smaller groups, altruistic interventions occur more often [59], and free riding is
less common [60]. Perhaps this helps explain why interactions in smaller groups, particularly
in groups of two individuals, are consistently observed to be more prevalent in a wide range of
human social interactions [6].

The results presented in this paper were obtained within the limit of high home fidelity,
under which communities become asymptotically bounded interacting groups. A relaxation of
this limit is expected to lead to several key differences. Firstly, we would expect an increase in
the rate at which between-community events happen, tied to the occurrence of group
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interactions between individuals of different communities, and therefore to the blurring of the
interacting boundaries between them. In the pairwise donation game, considering less isolated
clusters leads to stricter conditions for the evolution of cooperation [25]. Even though a similar
trend has been observed in the CPD in some small networks [26, 36], this should not be
extrapolated to larger networks and all topologies as interacting groups have variable size and
the dilemma no longer has an equivalent pairwise representation. In that case, the group struc-
ture underlying the multiplayer interactions depends not only on the size and number of com-
munities but also on how the home nodes of each community are connected. Accounting for
interacting groups in a different way may therefore lead to fundamentally different results,
even when the underlying social structure remains very similar or the same, as was previously
reported in [61, 62]. Parallel approaches to higher-order interactions show surprisingly high
cooperative states under a class of multiplayer extensions of the prisoner’s dilemma [63]. Simi-
lar effects may emerge under communities with blurred boundaries, namely when considering
dilemmas with non-rivalrous public goods and/or shared costs, such as the S dilemma, given
their propensity to evolve cooperation under high group size variance [24, 42, 62]. The frame-
work used in this work shows its flexibility once again, leading to evolutionary dynamics simi-
lar to metapopulation and deme models under large home fidelity, while offering the
possibility to explore new complex group interaction dynamics outside of that limit.
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