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ABSTRACT
Imprecision and noise in the time series data may result in
series with similar overall behaviors being recognized as be-
ing dissimilar because of the accumulation of many small lo-
cal differences in noisy observations. While smoothing tech-
niques can be used for eliminating such noise, the degree
of smoothing that needs to be performed may vary signifi-
cantly at different parts of the given time series. In this pa-
per, we propose a content-adaptive smoothing, CA-Smooth,
technique to reduce the impact of non-informative details
and noise in time series by means of a data-driven approach
to smoothing. The proposed smoothing process treats dif-
ferent parts of the time series according to local information
content. We show the impact of different adaptive smooth-
ing criteria on a number of samples from different datasets,
containing series with diverse characteristics.

CCS Concepts
•Information systems → Spatial-temporal systems;
Data cleaning;
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(a) original time-series (b) alternative smoothings

Figure 1: Alternative smoothings of time series

1. INTRODUCTION
Filtering is a function that transforms one time series into

another by altering the values of its elements in a way that
takes into account their neighborhoods. The filtering oper-
ation can smooth, dampen, or accentuate fluctuations con-
tained in the time series data [16]. Smoothing is performed
through a convolution function that takes as input a time-
series and a smoothing filter – the convolution operation
slides the filter over the time series and for each position the
overlapping values of the series and the kernel are multiplied
and summed up:

Definition 1.1 (Smoothing). Given a time series
T = [t1, t2, ..., Tn] of length n, and a smoothing filter Φ =
[φ1, . . . , φm], the convolution T ∗ φ is defined as:

ti ∗ Φ =
∑
k

φk ∗ ti−k+m
2
,

Where ∗ denotes the convolution operator and m is the
length of the filter.

In this paper, we assume that the smoothing filter, Φ, is
defined through a Gaussian filter:

φx = G(x− m

2
, σ) =

1

2πσ2
e
−
x−m

2
2

2σ2 .

The degree of the smoothing process can be controlled by
varying the smoothing weights, determined by the standard
deviation, σ, of the Gaussian – note that σ also defines the
width of the Gaussian kernel (a kernel of length 6σ captures
∼ 99.9% of the smoothing weights). In Figure 1, we see four
different smoothed versions of a given series, differing in the



(a) fixed scale smoothing
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(b) content-adaptive smoothing

Figure 2: Fixed scale vs. content-adaptive smooth-
ing

Figure 3: Three sample salient temporal features of
a time series: In [4], authors recognized that salient
temporal features can represent salient events on a
time series; in this paper, we argue that they can
also help partition a series into fragments that show
different characteristics

value of σ and thus the size of the smoothing neighborhood
considered: in general, the bigger the size of the smoothing
filter, the more details are lost as each smoothed value cap-
tures a weighted average of a larger fragment of the time
series.

1.1 Proposed Approach: Content Adaptive
Smoothing of Time Series, CA-Smooth

While smoothing can be used for eliminating noise, in
practice, it may be difficult to determine a priori the amount
of smoothing that needs to be applied: in fact, the amount of
smoothing that needs to be performed may vary depending
on what part of the time series is being considered. In par-
ticular, we argue that different parts (fragments) of the se-
ries potentially carry different amounts of redundancy and,
thus, we propose to localize the smoothing process by (a)
partitioning the series into fragments, (b) which are then
independently smoothed according to their individual local
information characteristics. Therefore, in this paper, we pro-
pose a content adaptive smoothing technique, CA-Smooth,
to reduce the impact of non-informative details and noise in
time series by means of a data-driven approach to local fil-
tering. The four-step smoothing process treats the different
parts of the time series differently, depending on the local
information content:

• Locally-salient feature detection: In the first step,

CA-Smooth identifies locally salient features appearing
in the time series, at different scales, by means of a
salient feature detection algorithm [4] (see Figure 3).

• Fragment detection: In the second step, the algo-
rithm uses these locally salient features to partition
the input series into coherent fragments.

• Fragment characterization: In the third step, these
fragments are analyzed to identify their key properties
relevant for the smoothing operation. More specifi-
cally, we consider three properties to characterize time
series fragments: entropy and representativeness.

• Content-adaptive filtering: Finally, the identified
properties of each fragment are used for associating
to each time instant t a locally appropriate smoothing
parameter, σ(t), which will help preserve the critical
local information, while dropping the non relevant de-
tails around time instant, t.

As visualized in Figure 2, the proposed content-adaptive
CA-smooth algorithm treats different parts of the time series
according to local the content.

1.2 Organization of the Paper
The paper is organized as follows: In the next section we

discuss related works. In Section 3, we introduce the details
of the proposed content adaptive smoothing strategy, CA-
Smooth. In Section 4, we present experimental evaluations
and we conclude the paper in Section 5.

2. RELATED WORKS
Imprecision and noise in the time series data may result

in series with similar overall behaviors being recognized as
being dissimilar because of the accumulation of many small
local differences in noisy observations. This potentially af-
fects the results of (similarity based) clustering and classifi-
cation algorithms. In general, the phase of noise reduction is
a very important preprocessing step in time series analysis;
for this reason, many techniques have been developed [5, 15,
14] to reduce and remove the noise from the signal.

Although smoothing has been recognised as a technique
that can contribute to noise reduction [2], recent studies in-
cluding [8] have shown that existing unsupervised smooth-
ing technique do not significantly contribute to clustering
and classification improvement. In [8] authors show that
the automated application of smoothing without domain ex-
pertise does not, on average, improve the performance of
baseline classifiers. This “negative result” motivates our re-
search: we claim that this lack of improvement is due to
the fact that unsupervised smoothing does not take into ac-
count the peculiarities of the different portions of the con-
sidered time series; we therefore propose content adaptive
(data driven) techniques to mediate between unsupervised
and data/domain aware smoothing techniques. Time series
smoothing techniques have also been proposed to prioritize
end usersÕ attention: [11] proposes to smooth time series
visualizations as much as possible to remove noise, while
retaining large-scale structure to highlight significant devia-
tions, and develop the ASAP analytical operator that auto-
matically smooths streaming time series by adaptively opti-
mizing the trade-off between noise reduction (i.e., variance)
and trend retention (i.e., kurtosis).



An adaptive denoising algorithm presented in [6] consists
of two steps: given a target length of 2n + 1, the first step
partitions time series into segments of 2n+ 1 points, in such
a way that each segment has an overlap of n+ 1 points with
the next one. Then, the second step fits the segments with
the best polynomial of order K. The two free parameters
(K and n) are determined by studying the variance of the
residual data. As opposed to our content adaptive method,
this approach adapts the denoising parameters to the data,
but it keeps them constant across the entire analysed time
series, while, as it will be clearer in the next sections, we
adapt the smoothing intensity to the local characteristics
of fragments, whose length itself is not common to all the
fragments but varies according to local characteristics.

3. CA-SMOOTH: CONTENT-ADAPTIVE
TIME SERIES SMOOTHING

As described in the Introduction, in this paper, we argue
that different parts of a given time series may carry differ-
ent amounts of noise and redundancy and, thus, a content-
adaptive smoothing process which locally varies the degree
smoothing by (a) partitioning the series into fragments (b)
which are then independently smoothed according to their
individual local information characteristics, may lead to sig-
nificantly better smoothing results than an inflexible strat-
egy that applies the same smoothing filter across the entire
time series. In this section, we present a content-adaptive
smoothing algorithm, CA-Smooth. In particular, we de-
scribe the four key steps of the algorithm: (a) locally-salient
feature detection, (b) fragment detection, (c) fragment char-
acterization, and (d) content-adaptive filtering.

3.1 Locally-Salient Feature Detection
A series can be fragmented in different ways [7, 9, 10, 4]. A

fixed segmentation strategy would partition the series into
fragments of the same size, while an adaptive data-driven
segmentation would identify fragment boundaries in a way
that represents characteristics and features of the time se-
ries. Other techniques, such as CUTs [10], consider the cur-
vature of the series and create segments in such a way that
each segment has a minimal distance from the line connect-
ing the first and the last points of the segment.

In CA-Smooth, we use a feature based approach: the tem-
poral features used in the segmentation are identified using
a locally-salient robust feature detection algorithm from our
prior work [4]. Given a time series, T , of length n, the algo-
rithm returns a set, S of salient features, where each salient
feature, si = 〈ti, σi, descri〉 ∈ S, is a triple, where ti is the
center of the temporal feature, σi is the feature scale defin-
ing the 6σ temporal scope, (ti−3σi, ti+3σi), of the feature,
and descri is a histogram of 1D gradients describing the lo-
cal temporal structure. Intuitively, each of these features
is significantly different from its neighborhood in the cor-
responding scale and therefore can be used to characterize
the “key” events on the series. The algorithm uses a σmin
threshold to control the sizes of the smallest features identi-
fied on the series. A second parameter, τ , described in the
next subsection, is used to control the lengths of the frag-
ments. Since the number of salient features will impact the
number of fragments (and thus their lengths), if the num-
ber of features is greater than n

τ
, we prune lower-intensity

features among those that are temporally co-located.
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Figure 4: Fragment aggregation

3.2 Fragment Detection
As discussed above, the scope of a salient temporal fea-

ture describes a characteristic region in which an important
change in the trend of the series happens. Our approach
exploits this property to determine the fragments of a time
series. In particular, we argue that a coherent data driven
segmentation should preserve the integrity of salient fea-
tures: i.e., portions of the series which can be associated
to a given salient feature should ideally fall within the same
fragment. This would ensure that a salient event would be
represented in its entirety within the same fragment. Let T
be a given time series of length n and S be the set of salient
features. The algorithm considers the set S and returns a
set of time series fragments, F , such that the features that
cover the same region are grouped to create a cluster in a
way that preserves their integrity.

It is easy to see that, one can order the interval boundaries
of the salient features in S to obtain an initial fragmentation
of the time series, where each fragment would be represented
by the set of overlapping salient features at that region of
the time series. This, however, may have two disadvantages:
firstly, (a) we may end up with a lot of small fragments and
(b) this process may partition the individual salient features,
negatively impacting their integrity. To avoid these, given
two consecutive interval boundaries, the algorithm checks if
they represent a fragment with length less than τ . If this
is the case, the smaller interval is merged with the biggest
nearest interval to create a new larger fragment. If the new
interval satisfies the threshold constraint, it is confirmed as
a fragment and the algorithm processes the next pair of in-
terval boundaries. This process leads to a set of fragments,
F = {f1, ..., fl}, where each fragment fi has a corresponding
scope (ts,i, te,i) such that

1. the length of each fragment is greater than or equal to
the length lowerbound τ ; i.e., te,i − ts,i ≥ τ ;

2. the number of the fragments is suitably bounded; i.e.,
l ≤ n

τ
; and

3. the first and the last fragment boundaries are the first
and the last point of the series, respectively; i.e., xs,1 =
1 and xe,l = n.

Figure 4 presents an example: Here, the black circles rep-
resent the temporal scopes of the features. As we can see,
using these features, we can potentially create up to 13 can-
didate fragments. Ideally, however, we would seek to avoid
overly small fragments and therefore combine nearby inter-
vals to generate 7 larger and more coherent fragments.

3.3 Fragment Characterization
Let F be the set of fragments of a time series, identified

as above. The next step analyzes each fragment to extract
characteristics to help compute the amount of smoothing



that will be applied during the final filtering phase. Natu-
rally, the degree of smoothing of a fragment will be a func-
tion of its local content and its relationship relative to the
rest of the series. In this section, we consider two criteria:

• entropy: the information content of a fragment, mea-
sured using entropy, may indicate how much a frag-
ment should be smoothed;

• representativeness: the similarity of a given fragment
to the rest of the series may indicate how represen-
tative the fragment is and, therefore, may need to be
considered during smoothing.

3.3.1 Entropy
We compute the entropy, E(fi) of a given fragment fi by

first quantizing the fragment into a quantization alphabet
and counting the number of occurrences of each symbol:

Definition 3.1 (entropy). Let A be the quantization
alphabet and prij denotes the portion of times the symbol
ajinA occurs in fragment fi. The entropy [13], for the frag-
ment fi is defined as

E(fi) = −
∑
aj∈A

prij log(prij).

3.3.2 Representativeness
In addition to entropy and feature scale, we also consider

the similarity of a given fragment to the rest of the time se-
ries as a potential indicator of how representative the frag-
ment is and, therefore, how much smoothing should be ap-
plied to the fragment. To compute the representativeness
of the fragment fi ∈ F , we first compute pairwise Dynamic
Time Warping distances [12], ∆dtw(fi, fj), between all pairs,
fi, fj , of fragments in the series. We then create a similarity
matrix Π, where the entry Π[i, j] represents the similarity of
fragment fi to fragment fj , defined as

Π[i, j] = 1− ∆dtw(fi, fj)

maxfh∈F {∆dtw(fi, fh)} .

We then row-normalize the similarity matrix Π to obtain

Π′[i, j] =
Π[i, j]∑

fh∈F
Π[i, h]

.

Note that the transpose, T = Π′T , of the row-normalized
matrix Π′ can be considered as a random walk transition
graph, where each column j corresponds to a fragment, fj
and the entry T [i, j] indicates the probability of random
walk from fragment fj to fragment fi, such that the more
similar the fragment fi is to the fragment fj the higher the
probability of the random walk from fj to fi.

Given this transition matrix, T , representing mutual sim-
ilarities among the fragments, CA-Smooth then applies the
well-known PageRank algorithm [3] to associate a degree of
representativeness to each fragment in the graph:

Definition 3.2 (Representativeness). Let F be the
set of all fragments and let T be the transition graph obtained
as described above. Then, for fi ∈ F , we compute its degree
of representativeness, R(fi), as

R(fi) = PR(fi, T ),

where PR(fi, T ) is the PageRank of fragment fi based on
the transition graph T that captures fragment similarities.
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Figure 5: Adaptive smoothing of the series in Fig-
ure 2 revisited: here the thin green line indicates
the degree of smoothing for different fragments of
the time series; as we see in the figure, this is sub-
ject to abrupt changes – CA-Smooth, instead, ad-
justs the degree of smoothing on a per-instant basis
(thin blue line)

3.3.3 Characteristics of a Fragment
Given the above, we associate to each fragment fi ∈ F a

combined characteristic, C(fi), defined as

C(fi) = 〈E(fi), R(fi), Ē(fi), R̄(fi)〉,

where Ē and R̄ are the inverses of E and R respectively. In
this paper, the inverse Ē(fi) is defined as

Ē(fi) =
maxj(E(fj))− E(fi)

maxj(E(fj))−minj(E(fj))

if maxj(E(fj)) 6= minj(E(fj)); and Ē(fi) = E(fi) other-
wise. Similarly for R̄.

3.4 Content-Adaptive Filtering
Given a fragment fi, CA-Smooth associates an overall

smoothing scale to that fragment taking into account its
characteristics, C(fi). More specifically, the smoothing scale
σ(fi) corresponding to the fragment fi is computed as

∀fi∈F σ(fi) = Θ(C(fi)),

where CA-Smooth uses the function Θ to adjust the degree
of smoothing local to each fragment taking into account the
fragments characteristics.1.

3.4.1 Computing Instantaneous Smoothing Degrees
Note that, even though σ(fi) captures the local charac-

teristics of fi, applying this smoothing scale to each and
every instant within the fragment would cause a significant
problem at the fragment boundaries: since the amount of
smoothing might change abruptly at the fragment bound-
aries, this can potentially introduce undesirable artifacts
in the smoothed series. Therefore, CA-Smooth does not
directly apply σ(fi) smoothing to each and every instant
within the fragment, fi. Instead, the algorithm varies the
smoothing scale on a per-time-instant basis rather than on a
per-fragment basis: further away from the fragment bound-
aries, the smoothing scale is governed by C(fi), but closer
to the fragment boundaries (i.e., boundaries with fi−1 and
fi+1), the smoothing scale would be a combination of the
smoothing scales of nearby fragments, eliminating abrupt
changes on the smoothing filter (Figure 5). Intuitively, the

1We show the impact of different Θ functions in the experi-
mental evaluation section.



smoothing scales themselves are smoothed to avoid smooth-
ing artifacts at the fragment boundaries:

Let F = {f1, . . . , fl} be the set of fragments identified on
the time series, T , fi ∈ F be a fragment, and let th be a
time instance in fi. Let also:

• wi = te,i − ts,i denote the length of the frame fi,

• th⊥ = th − wi−1/2,

• th> = th + wi+1/2,

• f(t) denote a function that returns the fragment that
contains the time instance t.

Given these, CA-Smooth computes the instantanous
smoothing scale, σ(th), to be applied at time instant th as
follows:

• if f(th⊥) = f(th>) = fi, then the time instance th
is sufficiently away from the two boundaries of the
fragment and we can apply the smoothing function
σ(th) = σ(fi);

• if th⊥ < 1 or th> > l, then th is closer to the start
or end of the time series than any other neighboring
fragments and, thus, we again have σ(th) = σ(fi);

• if, however, f(th⊥) = fi−1, then the point is closer to
fragment fi−1 and, therefore, the smoothing scale will
be a weighted average of the smoothing scales of the
fragments fi−1 and fi:

σ(th) =
ts,i − th⊥

w
σ(fi−1) +

th> − ts,i
w

σ(fi);

• similarly, if f(th>) = fi+1, then the point is closer
to fragment fi+1 and the smoothing scale will be a
weighted average of the smoothing scales of the frag-
ments fi and fi+1:

σ(th) =
th> − te,i

w
σ(fi+1) +

te,i − th⊥
w

σ(fi).

Intuitively, we are fitting a length-w window around each
time point th, where w corresponds to the length of the
fragment fi that contains the time point th. Given this
window, the degree of smoothing at time th is computed
based on how much this window overlaps2 with the frames
that come before or after the fragment fi.

3.4.2 Adjusting Instantaneous Smoothing
Note that, so far, we have not considered the degree of

smoothing, σg, global for the entire series. Intuitively, given
a target degree, σg, for the series, the average of all instan-
taneous smoothing degrees should be σg. Therefore, in the
final step, we adjust instantaneous smoothing degrees to re-
flect σg:

σ′(th) = σg

(
σ(th)∑

1≤j≤n σ(tj)

)
.

2Note that the window can overlap with only one of the
fragments fi−1 or fi+1 at a time, never both; note also that
the only situation in which the window does not overlap with
either of the two neighboring fragments is when th is at the
center of the fragment fi.

Table 1: Datasets Characteristics
DataSet #series

Coffee2 286
FaceFour 350

Gun 150
ECG200 96

synthetic control 60
Lighting2 TEST 638

Table 2: Experiments Configurations
Parameter Value

σg 2% of the series length
τ c× (6× σg)
c 1,2,3
σ0

c
2
∗ σg

# of octaves (O) 2

Once the scale σ(th) is computed for time instance, th, we
apply a Gaussian filter with variance σ(th), centered around
th. As we discussed earlier, this corresponds to a filtering
window (th − 3σ(th), th + 3σ(th)). At the very boundaries
of the time series, where the start or end of the smoothing
interval may fall beyond the boundaries, we suitably scale
σ(th) to ensure that smoothing filter always falls within the
time series.

4. EVALUATION
In this section, we present case studies to illustrate the

impact of different content-adaptive smoothing criteria. For
this purpose, we use six datasets 4 with different tempo-
ral characteristics. These data sets, listed in Table 4, are
publicly available at [1].

4.1 Configurations
In Table 4, we report the configuration parameters we

consider. Here, σg is the global smoothing parameter, which
would be used by a fixed smoothing strategy. The adaptive
methods considered in this paper adapt the instantaneous
degree of smoothing based on the characteristics of the data,
in such a way that the overall average smoothing across the
entire series is equal to σg. As described in Section 3.2, the
parameter τ is the length of the smallest fragment created
and is a multiple, c, of the of the average smoothing win-
dow size, (6 × σg). In this paper, we rely on the process
described in [4] for extracting locally-salient robust features
(Section 3.1) which are then used for identifying the frag-
ment boundaries (Section 3.2); σ0 and O are two parame-
ters used by this algorithm to control the feature sizes. In
particular, the size of the smallest feature identified by the
algorithm is 6×σ0, whereas the size of the largest feature is
6×σ0× 2O. As we see in Table 4, the sizes of these features
are also a function of the target smoothing rate, σg.

4.2 Results
In Figures 6 and 7, we present the smoothing samples for

the six data sets; in particular, figures labeled (a), (c), and
(e) show the instantaneous smoothing degrees computed by
CA-Smooth under four entropy and representativeness based
smoothing criteria discussed in Section 3.3.3, whereas figures
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Figure 6: Impact of different filtering strategies

labeled (a), (b), and (c) show the resulting content-adapted
smoothed series.

Let us consider the Gun series presented in Figures 7(a)
and 7(b). As we see in Figures 7(a), the entropy based cri-
teria E (Ent+ in the figure) is active where there is major
change in the series and, as expected, the opposite crite-
ria, Ē (Ent- in the figure), provides higher instantaneous
smoothing weights where the series are relatively flat. The
figure also shows that different regions of the series are as-
sociated with different degrees of representativeness as de-
scribed in Section 3.3.2. In the figure Rep+ corresponds to
the criterion R which applies high smoothing on parts of
the series with high representativeness, whereas Rep− cor-
responds to the opposite criterion, R̄, which smooths pri-
marily parts of the series that are not representative. As
we see in Figures 7(b), different criteria lead to different de-
grees of smoothing especially at the parts of the series with
large change – the appropriate criteria to select would be a
function of the underlying task.

Finally, Figure 8 shows the impact of different values of
c, which controls the lowerbound, τ , of fragment sizes, on
the instantaneous smoothing. As we see in these figures,
for lower values of c, we obtain more fragments and the
instantaneous smoothing degrees becomes more impacted by
the very local characteristics of the series; on the other hand,
as the value of the c increases, the number of fragments
reduces and the degree of instantaneous smoothing becomes
impacted by the characteristics of larger fragments.

5. CONCLUSIONS
Arguing that time series smoothing must be performed

in a way that is adaptive to the temporally-varying char-
acteristics of the input series, in this paper, we proposed a
content-adaptive smoothing strategy, CA-Smooth. The pro-
posed technique relies on a locally-robust feature extraction
approach to locate robust time series fragments and then
identify characteristics, such as entropy and representative-
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Figure 7: Impact of different filtering strategies (cont.)

ness, of these fragments. CA-Smooth treats different parts
of the time series according to the discovered fragment char-
acteristics and associates instantaneous smoothing weights
to each time instant in a way that represents both the user’s
global smoothing target and the local series characteristics.
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