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H erein, we frame cancer treatment as a contest in which
the physician enters a predator-prey–like game with the
patient’s cancer cells. Therapy options represent the

physician’s strategies. Cure occurs if therapy drives the cancer popu-
lations extinct. But, for most metastatic cancers, extinction is not
achievable because the cancer cells are active “players” in the game.
They respond to treatment by evolving effective strategies of therapy
resistance. The physician-predator can also “evolve” in the sense that
he or she can vary treatments over time.

Contests such as between the physician and cancer cells can be
framedmathematicallyusinggametheory.DevelopedbyVonNeumann
andMorgenstern,1 Nash,2 andothers,3 gametheorydescribesthestrat-
egies(choices),payoffs(consequences),anddynamical interactionsin-
volving both individuals and populations. Although initially focused on
conflict4 andcooperationineconomics,5 Maynard-SmithandPrice6 pio-
neereditsapplicationtoevolutionarydynamics.Inevolutionarygames,7

the players inherit rather than choose their strategies, and their payoffs

are survival and proliferation. Game theoretic approaches have been
applied to management of antibiotic resistance8 and control of agricul-
tural pests,9 as well as cancer progression10 and treatment.11

The cancer therapy predator-prey game differs from those in
nature in ways that limit the physician: he or she does not gain a
fitness advantage from killing cancer cells and his or her strategies
are constrained by costs, ethics, and treatment toxic effects.
However, cancer therapy also contains elements of social/
economic games12 that result in asymmetries that confer critical
advantages on the physician, as follows.13

First, only the physician is rational and can anticipate future
events. In contrast, cancer cells, typical of evolving organisms
in nature, can only respond to what is happening or has happened.
In particular, cancer cells can never anticipate or adapt to future
conditions that differ from current or prior circumstances.

Second, there is a consistent sequence in the game because the
physicianalwaysmakesthefirstmovebyapplyingtherapyandonlythen

IMPORTANCE While systemic therapy for disseminated cancer is often initially successful,
malignant cells, using diverse adaptive strategies encoded in the human genome, almost
invariably evolve resistance, leading to treatment failure. Thus, the Darwinian dynamics of
resistance are formidable barriers to all forms of systemic cancer treatment but rarely
integrated into clinical trial design or included within precision oncology initiatives.

OBSERVATIONS We investigate cancer treatment as a game theoretic contest between the
physician’s therapy and the cancer cells’ resistance strategies. This game has 2 critical
asymmetries: (1) Only the physician can play rationally. Cancer cells, like all evolving
organisms, can only adapt to current conditions; they can neither anticipate nor evolve
adaptations for treatments that the physician has not yet applied. (2) It has a distinctive
leader-follower (or “Stackelberg”) dynamics; the “leader” oncologist plays first and the
“follower” cancer cells then respond and adapt to therapy. Current treatment protocols for
metastatic cancer typically exploit neither asymmetry. By repeatedly administering the same
drug(s) until disease progression, the physician “plays” a fixed strategy even as the opposing
cancer cells continuously evolve successful adaptive responses. Furthermore, by changing
treatment only when the tumor progresses, the physician cedes leadership to the cancer cells
and treatment failure becomes nearly inevitable. Without fundamental changes in strategy,
standard-of-care cancer therapy typically results in “Nash solutions” in which no unilateral
change in treatment can favorably alter the outcome.

CONCLUSIONS AND RELEVANCE Physicians can exploit the advantages inherent in the
asymmetries of the cancer treatment game, and likely improve outcomes, by adopting more
dynamic treatment protocols that integrate eco-evolutionary dynamics and modulate
therapy accordingly. Implementing this approach will require new metrics of tumor response
that incorporate both ecological (ie, size) and evolutionary (ie, molecular mechanisms of
resistance and relative size of resistant population) changes.
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cancancercells“play”byrespondingthroughtheevolutionofresistance
strategies.Evenifthemolecularmachineryofresistanceispresentprior
totreatment, it isnotunderselectionasaresistancestrategyuntil treat-
ment. Because of this, cancer therapy is a leader-follower game.14 First
investigated by von Stackelberg,15 analyses of leader-follower dynam-
ics (or “Stackelberg games”) identify critical advantages to the leader.
The physician’s “first move,” along with the ability to anticipate subse-
quent cancer cell responses, provides a critical opportunity to obtain
more favorable outcomes by steering and/or limiting the cancer cell’s
resistance strategies.16,17 Furthermore, when therapy is administered
episodically or in cycles, the first-move advantage can be used to probe
the tumor for available resistance strategies. This “pursuit and evasion”
game has been extensively investigated through optimization meth-
odsindifferentialgametheory(gameswithtime-varyingstrategies),16,17

such as the principle of optimality by Bellman.18 Thus, the physician can
use information obtained in initial treatment cycles to progressively
inform and optimize subsequent cycles.

Methods
Cancer Therapy as a Game
We frame cancer therapy as a game theoretic contest in which the
physician assumes a predator-like role by attacking and killing

cells within the cancer population. While some cancers may con-
tain a single homogeneous cell population, we assume that most
malignant tumors contain multiple subpopulations with varying
sensitivities to available therapies. The physician begins the game
by applying some treatment. Even as many (perhaps most) can-
cer cells die, survivors adapt and evolve counter (resistance)
strategies. As the game progresses, the physician can then play
the game by applying additional treatments, which can be identi-
cal to or different from prior treatments. With each new treat-
ment, the tumor cells continue responding and adapting.

Our game theoretic model builds on a well-established math-
ematical formalism developed over several decades. Figure 1 and
Figure 2 provide a brief outline of the quantitative methods and
dynamics of the cancer therapy game. However, within the text we
frame the discussion entirely in qualitative terms, reserving the
formal mathematical analysis for a future publication.

Current treatment protocols for metastatic cancer typically
apply a drug or drug combination at maximum tolerated dose
(MTD), either continuously or in repeated identical cycles.
Response metrics are changes in tumor volume based on imaging
Response Evaluation Criteria in Solid Tumors (RECIST) and/or
serum biomarkers. The same treatment regimen continues until
there are unacceptable toxic effects or unambiguous evidence of
tumor progression.

Figure 1. Mathematical Formulas for Cancer Therapy Game
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An example of a cancer therapy game in which the cancer cells evolve strategies to maximize their net proliferation rates, and the physician aims to balance drug toxicity
with overall tumor burden. Two approaches by the physician are considered: (1) Therapy that aims to maximize patient outcome given the current resistance strategy of
the cancer cells. This treatment strategy results in a Nash equilibrium; (2) Therapy that aims to maximize patient outcome by anticipating the evolutionary and ecological
response of the cancer cells. This therapy results in a Stackelberg equilibrium and a better outcome than the Nash equilibrium (see Figure 2).
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Implicit in conventional treatment strategies (whether using
MTD or metronomic drug scheduling) is that maximum benefit to
the patient requires maximum tumor cell killing. In metastatic,
incurable clinical settings, this strategy is intuitively appealing. Yet,
it may be evolutionarily unwise. As shown in Figures 2, 3, and 4,
maximum cell killing is an optimal strategy only if no cancer cells are
capable of evolving a successful resistance to the applied therapy.
However, if 1 or more cancer subpopulations are resistant a priori
or capable of evolving adaptations quickly (ie, before the treat-
ment kills them), this strategy will fail.

In fact, under these game theoretic conditions, maintenance of
a constant drug regimen at MTD cedes evolutionary control to the
cancer cells. As followers, the cancer cells can begin to adapt only
when the treatment is applied. They are at a disadvantage because
therapy begins as a Stackelberg game in which the physician is the
leader. However, by administering the same drugs and doses within
each treatment cycle, the physician subjects cancer cells to a con-
stant and predictable selection force. By adapting to the physi-
cian’s current therapeutic regime, the cancer cells are simultane-
ously adapting to the physician’s future (identical) treatments.
Consider cancer treatment as a rock-paper-scissors game in which
almost all cells within the cancer play, for example, “paper.” It is clearly
advantageous for the treating physician to play “scissors.” Yet, if the
physician only plays “scissors,” the cancer cells can evolve to the
unbeatable resistance strategy of “rock.”

Thus, continuous application of a single, high dose-density drug
regimen provides a shorter-term ecological success (tumor
response or remission), but failure to anticipate the longer-term evo-
lutionary arc permits the tumor to evolve resistance unopposed.
Consider an eager dog that chases a squirrel by running directly at it.
Coyotes, in contrast, have learned that squirrels respond to pursuit
by running toward the nearest tree and, therefore, do the same. In the
former contest, the squirrel becomes the leader as the dog follows it
in a wide arc toward and up the tree. In the latter, the coyote leads
and prevents the squirrel from executing its evasive strategy.

Thus, by changing therapy only when the tumor evolves resis-
tance and progresses, the physician has become the follower. He or
she simply reacts to evolution of resistance by the leader tumor cells.
In this setting, as shown in Figure 2 and Figure 3, the strategy of con-
tinuous treatment at MTD until progression is rarely the best avail-
able strategy. In fact, it is frequently the poorest strategic approach
to the cancer therapy game.

In the context of game theory (the Table provides a glossary of
game theory terms), when the physician does not fully use his or her
advantages as a rational leader, he or she loses the opportunity to
both anticipate and steer. Figure 2 represents a graphical depiction
of the cancer therapy game. In the absence of a leader and fol-
lower, each player in a time-dependent game such as cancer therapy
responds to the actions of the other players. The cancer evolves a
best response to the current and ongoing therapy. When the
physician observes the shift in cancer strategy—for example, radio-
graphic progression—he or she can adjust treatment based on
available literature that has demonstrated the best response (ie,
second-line treatment) to the current strategies of the cancer cells.
Each move and countermove sees both the cancer cells’ strategies
and physician’s therapy strategies moving along their respective best-
response curves. This can lead to either a perpetual evolutionary arms
race (if the cancer cells’ and physician’s best response curves do not

intersect) or a Nash solution in which the 2 curves intersect. At the
Nash equilibrium, neither player (cancer or physician) gains an ad-
vantage by unilaterally altering their strategy. Such outcomes are the
norm for evolutionary games in nature (Figure 2).

Game theory models have clear implications for current cancer
therapy.20-23 If cancer cells can find an adaptive strategy either
through existing molecular mechanisms already encoded in the
human genome or acquisition of a resistant mutation, survival and
progression of a cancer population is an assured outcome. Further-
more, using any conventional cancer treatment approach (whether
MTD or metronomic therapy) designed to kill the maximum
number of cancer cells while ignoring the underlying evolutionary
dynamics, the physician has no available strategy to improve current
outcomes.

Exploiting Game Theoretic Advantages in Cancer Therapy
Exploiting the asymmetries in the cancer treatment game will likely
require abandoning the current static treatment protocols in favor of

Figure 2. Nash and Stackelberg Equilibria
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We assume a 2-player game in which player 1 and player 2 choose actions u1 and
u2 to maximize their payoffs J1(u1, u2) and J2(u1, u2), respectively. The graph
shows level curves of payoffs J1(u1, u2) (solid blue curves) and J2(u1, u2) (solid
orange curves) in the (u1, u2)-space. Player 1 would like to achieve point T1 (his or
her absolute maximum, known also as team optimum in game theory), and we
investigate whether he or she can get close to this outcome when playing
simultaneously with player 2 and when playing first. The blue dashed line
denotes the best response of player 1 to any action of player 2 and the orange
dashed line denotes the best response of player 2 to any action of player 1 (both
obtained by maximizing a corresponding player’s payoff for any choice of the
other player). If the players play simultaneously, the outcome lies at the
intersection of the 2 best-response curves, the Nash equilibrium (N). However,
if the physician (player 1) applies treatment with foreknowledge of the
best-response curve of tumor cells, he or she can, as the leader, play the
strategy u1 with superscript S1 based on that information. In contrast, the
nonrational, follower cancer cells can only respond with the strategy on their
best-response curve. The physician can anticipate this outcome; the cancer cells
cannot. By exploiting his or her leadership role, the physician can both
anticipate and steer the cancer cells’ resistance evolution toward a much better
patient outcome corresponding to the point S1, the Stackelberg equilibrium.
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dynamic therapy designs that explicitly integrate the evolutionary
dynamics of resistance. As demonstrated in Figure 3, a physician can
exploit the lead position in the Stackelberg game by anticipating the
resistance strategies of the cancer cells. By understanding both the
available molecular mechanism(s) of resistance and the Darwinian
dynamics that govern the proliferation of resistant phenotypes, treat-
ments can be modified, using mathematical models when necessary,
to prolong the time to progression, and perhaps even cure. The key is
to have some foreknowledge or estimate of the cancer cell’s best re-
sponse curve. If I do X, how will the cancer cells respond and adapt over
time? Just as the coyote can anticipate the squirrel’s escape options, as
leader, the physician can choose to steer the cancer. A Stackelberg
solutionrequirestheleadertochoosehisorherbestoutcomealongthe
other player’s best response curve. This solution will be at least as good,
and generally much better, than the Nash solution.

Are such strategies achievable in clinical settings? A few recent
trials have demonstrated successful integration of evolutionary

principles into treatment protocols. For example, bipolar androgen
therapy24-26 anticipates androgen receptor overexpression as an
adaptive resistance mechanism in metastatic castration-resistant pros-
tate cancer. To exploit this adaptive strategy, bipolar androgen therapy
administers androgen to induce a tumor response and to restore nor-
mal androgen expression, rendering them once again vulnerable to
androgen deprivation therapy (ADT). A study by Antonia et al27 dem-
onstrated that when small cell lung cancers evolved resistance to
immunotherapy, their response to subsequent cytotoxicity greatly
increased. A study11 treating patients with metastatic castration-
resistant prostate cancer with abiraterone explicitly applied a game
theoretic mathematical to delay onset of resistance.

Treatment With Imperfect Knowledge of Tumor Cells’
Strategies–Applications of Differential Game Theory
In a perfect-information Stackelberg game, the physician would be
continuously aware of the evolutionary and ecological states of the

Figure 3. Adaptive Strategies for Metastatic Castration-Sensitive Prostate Cancer

95% AR positive, 3% AR and CYP17A1 positive, 2% AR negativeA

65% AR positive, 35% AR and CYP17A1 positive, 10% AR negativeB

AR positive

ADT ADT ADT ADT ADT

ADT ADT ADT

ADT ADT ADT ADT ADT

ADT ADT ADT

AR negativeCYP17A

Abiraterone

Computer simulations of treatment outcomes using methods outlined in
Gallaher et al19 and similar to the models used to design ongoing clinical trials.11

The subpopulations are color coded, and the area of each simulation represents
total tumor burden. The model assumes a newly presented prostate cancer
metastasis with different initial distributions of resistant and sensitive
subpopulations. A, A pretreatment biopsy finds that 95% of the cancer cells
express androgen receptor (AR) but not CYP17A, 3% are both AR and CYP17A1
positive, and 2% are AR negative. The frequency of the cell populations
suggests that the fitness of the AR-positive phenotype is much higher than
AR-negative or CYP17A phenotypes. In the top row, continuous androgen
deprivation therapy (ADT) rapidly selects for resistant populations with the
dominant clones overexpressing CYP17A, leading to tumor progression. An
alternative approach replaces continuous ADT with the protocol used in Zhang
et al.11 Androgen deprivation therapy is administered until the tumor burden is
reduced by half (based on prostate-specific antigen measurements) and then
withdrawn. In the absence of therapy, the fitness advantage of the AR-positive

cells allows them to grow at the expense of the resistant populations, thus
prolonging tumor control with ADT. B, The initial biopsy shows the AR-positive
phenotype to be 65% of the cells, with 35% CYP17A1 and 10% AR negative.
Because the relative fitness advantage of the AR-positive cells is not as great as
in A (based on the higher relative fractions of AR-negative and CYP17A1
phenotypes), the adaptive strategy in A will not be as successful (simulation not
shown). An alternative evolutionary strategy in the lower row alternates
treatments directed against AR-positive (ADT) and CYP17A1 (abiraterone) cells,
as well as treatment holidays to control the AR-positive and CYP17A1
populations while maximally reducing the growth of the AR-negative cells.
Many other strategies (eg, addition of docetaxel) are available, and similar
simulations can allow the treating physician to devise a patient-specific protocol
that optimizes outcomes. Each arrowhead represents a treatment period. The
drug used is above the arrowhead (red arrowheads indicate ADT; blue
arrowheads, abiraterone). No specified drug indicates a treatment holiday
(black arrowheads).
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tumor. However, in reality physicians must often treat cancers with
drugs for which the molecular mechanisms and eco-evolutionary
dynamics governing resistance are poorly understood or entirely
unknown. Furthermore, while the game dynamics occur continu-
ously, tumor responses are measured through tests obtained at
intervals of weeks or months. During the time between tests, treat-
ments typically remain fixed except in cases of toxic effects. In the
terminology of differential games, clinical cancer treatment is an
unusual contest that can be “open loop” and “closed loop” at differ-
ent time points. That is, during each cycle of therapy, the game, from
the physician’s view, is an open-loop game because he or she cannot
directly observe the strategies of the cancer cells and, therefore, can-
not adjust his or her treatment strategy. However, at some time points,
the game could28 become closed loop if the associated tests reveal
the strategies of the cancer cells during the prior cycle.

The recursive dynamics during cycles of therapy, particularly in
tumors in which several effective treatment strategies are avail-
able, provide a potential opportunity to probe the tumor to deter-
mine and measure key resistant and sensitive populations (Figure 4).
The therapy probes would then give way to a more definitive therapy
based on knowledge of (1) the strategies available to the cancer popu-
lations, (2) an estimate of their current relative sizes, (3) observed
past and estimated future changes in cancer populations, and
(4) past and present evolutionary dynamics.

From the late 1950s, dynamic programming and calculus of
variations were developed to control systems (initially rockets) in

which actions can and should vary with time (eg, the Bellman18 prin-
ciple of optimality, the Pontryagin maximum principle29). By the
1970s, dynamic programming expanded into differential game
theory. Here, 2 players have time-dependent strategies. Each tries
to maximize accrued payoffs or some payoff defined over a fixed time
(eg, pursuit evasion games found in nature, dogs and squirrels, or
in modern weapons systems). These complex, seemingly intrac-
table problems are solved by breaking them into a sequence of small,
nested subproblems. Optimal strategies are uncovered by recur-
sively combining the solutions to each subproblem.11,17,30,31

Figure 4 represents a highly simplified example of how an
oncologist “leader” can use the Bellman principle of optimality to
probe the tumor with short bursts of different therapies to
uncover the available cancer cells’ strategies and the relative sub-
population sizes. This “revealed information” can optimize out-
comes in subsequent rounds of the game. An interesting alterna-
tive approach is physical perturbation of the tumor (eg, by focused
ultrasound), which causes cancer cells to release macromolecular
biomarkers. A preclinical study showed how these serum markers
accurately reflect the intratumoral population distribution.32

Discussion
The therapeutic contest between physicians and cancer cells con-
tains 2 important asymmetries. First, only the physician can plan

Figure 4. Using the Bellman Theorem to Guide Brief Applications of Treatment to Estimate the Size of Resistant Populations and Their Strategies

Small ADT-resistant subpopulationA

Large ADT-resistant subpopulationB

AR positive

ADT Abiraterone

ADT Abiraterone

AR negativeCYP17A

Estimate AR-positive
subpopulation

Estimate CYP17A and
AR-negative subpopulations

PSA = 1.0 PSA = 0.5 PSA = 1.0 PSA = 0.7

PSA = 1.0 PSA = 0.6 PSA = 1.0 PSA = 0.5

As a simplified example of this “unmasking process,” we use the simulations in
Figure 3 but assume that the metastatic prostate cancer is presenting with
unknown cellular composition. Because nearly all precastration metastatic
prostate cancer initially responds to androgen deprivation therapy (ADT), we
assume that the androgen receptor (AR)-positive population is dominant. Here
we wish to determine the size of the resistant populations by giving brief pulses
of ADT and abiraterone. A, Here the ADT-resistant subpopulations are small.
Initial treatment with a pulse of ADT causes a marked decrease in tumor size
(measured with prostate-specific antigen [PSA]). This allows the treating
physician to estimate the fraction of the AR-positive population. The physician

can then briefly apply abiraterone. The smaller decrease in tumor size is used to
estimate the size of the CYP17A1 phenotypes population. All other cancer cells
can then be assumed to be AR negative, allowing an evolution-based treatment
similar to that shown in Figure 3A. B, Here the initial combinations of ADT and
abiraterone show that the population expressing CYP17A is much larger and
indicate the need for combined therapy as shown in Figure 3B. Each arrowhead
represents a treatment period (red arrowheads indicate ADT; blue arrowheads,
abiraterone). The drug used is above the arrowhead. No specified drug
indicates a treatment holiday (black arrowheads).
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ahead and anticipate the cancer’s responses. In contrast, the can-
cer cells simply die or survive on the basis of current conditions and
their heritable sensitivity or resistance to the therapy. Second, can-
cer therapy is a Stackelberg game in which the physician can both
influence overall tumor burden and potentially steer the evolution-
ary trajectory of the cancer cells toward outcomes more favorable
to the patient. In terms of the evolution of resistance, the physician
can anticipate while the cancer cells can only react.

These asymmetries give the physician substantial advantages.
However, current treatment regimens for metastatic cancers such
as continuous MTD or identical cycles of intermittent therapy do not
exploit these advantages. By playing the same strategy repeatedly,
current cancer treatments greatly increase the likelihood of cancer
cells evolving effective countermeasures. Thus, because therapy is
changed only when the tumor progresses, the leader physician
becomes the follower. Although standard practice for decades,
administering drugs at maximum tolerated dose until progression
represents a poor strategy.

We suggest that cancer treatment protocols can benefit from
explicit consideration of these asymmetries and the physicians’
advantages as the leader in the cancer therapy Stackelberg game.
In general, the physician can exploit his or her advantages by devel-
oping more strategic approaches33 to cancer therapy that carefully
define and exploit the critical dynamics that govern success and fail-
ure in each treatment and by linking treatments in a well-
constructed sequence that takes advantage of their potential
synergies. These include the following.

Define the Goal of Treatment
When applied with curative intent and with reasonable expecta-
tion of that outcome, therapy should use evolutionary dynamics to
maximize the probability of cancer cell extinction. Importantly,
curative intent does not necessarily require application of initial
therapy at MTD. In fact, extinction of a population may best be
achieved through a strategic sequence of treatments in which, for
example, the initial therapy is designed to generate a small, homo-
geneous resistant population that is then eradicated by a second

treatment that specifically targets the adaptive strategy. This
approach, termed “double-bind therapy”20,34,35 or, more color-
fully, a “sucker’s gambit,”35 has been extensively analyzed and can
be observed clinically.27,36 Thus, for many cancers, the maximum
probability for cure may actually occur during second-line therapy.

Alternatively, when cure is not achievable, the goal should
explicitly focus on maximizing the time to progression. Here,
evolutionary dynamics are harnessed to suppress the growth of
resistant phenotypes. Because the physician cannot, by definition,
control resistant cells, the therapeutic strategy must focus on adap-
tive approaches that retain treatment-sensitive cells to suppress
the growth of resistant cells.

Include a Resistance Management Plan
Increasing numbers of cancer therapies are available, and many
produce an initially highly favorable response. Yet, most meta-
static cancers remain fatal because malignant cells have a remark-
able capacity to evolve resistance leading to tumor progression and
treatment failure. Fortunately, this topic has been investigated. In
fact, resistance management plans37 (RMPs) have been used (and
often mandated) for decades in the application of pesticides in
agricultural systems.38 Resistance management plans identify
and/or anticipate the mechanisms of resistance by the pests; moni-
tor for the emergence, distribution, and abundance of resistant pest
populations; and integrate evolutionary principles to create pesti-
cide application protocols that reduce the emergence and prolif-
eration of resistant phenotypes. In almost all cases, the RMP rec-
ommends reduced and more judicious applications of pesticides.12

Cancer treatment RMPs will require important changes in both
drug development and application. Pharmaceutical companies,
like pesticide manufacturers,37 will need to define the molecular
mechanisms through which cancer cells become resistant to the
drug. For oncologists, RMPs can exploit a number of evolution-
based strategies to delay or suppress proliferation of resistant phe-
notypes. We note, however, that these eco-evolutionary dynamics
can be highly patient specific.11 Thus, the role of precision medicine39

in oncology should be expanded. That is, in addition to identifying
molecular signatures that predict response to certain therapies in
pretreatment screens, precision medicine should also seek to iden-
tify molecular properties that will confer resistance. Then, as fea-
sible, metrics of tumor responses (ecological dynamics) and can-
cer cell type frequencies (evolutionary dynamics) should be used
to adjust therapy in terms of both dose scheduling and drugs used.
The metrics of eco-evolutionary dynamics become the means for
anticipating the cancer’s responses, for avoiding an arms race or Nash
equilibrium, and for bringing about a Stackelberg solution.

Perform “After Action Reports”
Outcomes of military and emergency activities are often analyzed
throughafteractionreports.40 Theyencourageself-evaluation41—what
did I do right and what did I do wrong? Current clinical research
in oncology focuses on evaluation of cohorts within some well-defined
treatment protocol. In contrast, after action reports focus on evaluat-
ing the outcomes of every patient, even those not enrolled in a
formal protocol, by asking, Was the stated goal of treatment (ie,
cure or control) achieved? If not, what are plausible explanations
for failure and could outcomes have been improved by altering the
treatment goal or the RMP?

Table. Glossary of Game Theory Terms

Term Definition
Game Any situation in which a player’s payoff

depends on the player’s own strategy and
the strategies of the other players

Players Participants in the game

Strategies (or actions) Choices that players make

Payoffs Benefits that accrue to the player that
depend on his or her strategy and the
strategies of the other players

Best reply Ri(uj)
of player i to action uj
of player j

The payoff-maximizing strategy for player i
given that player j uses strategy uj

Nash equilibrium
or solution

An equilibrium state in which no player can
increase his or her payoff by unilaterally
deviating from his or her current strategy;
in a Nash equilibrium the strategy of each
player is a best reply to strategies of
other players

Stackelberg equilibrium
(or solution) with player i
as the leader and the other
players as followers

An equilibrium state in which player i obtains
the highest possible payoff for himself or
herself when the other players use their best
reply strategy to the strategy of the leader
(player i); the leader’s payoff is always
at least as good as and mostly much better
than his or her payoff at the Nash equilibrium
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Conclusions

Cancer therapy is a Stackelberg game. Game theoretic analyses of
cancer therapy suggest that “precision medicine”39 in oncology can
be broadened from its current focus on molecular targets that
maximize the probability of immediate response. Additionally, pre-
cision medicine should incorporate the cancer therapy game to
anticipate and steer patient-specific and treatment-specific
evolutionary dynamics that govern the emergence and success
of resistant populations. Even with initially well-targeted thera-
pies, resistance leads to failure, progression, and patient death.
Taking control of the Stackelberg game will require (1) the applica-
tion of dynamic and sophisticated therapies and (2) the investiga-

tion of response metrics that move beyond the current focus on
changes in tumor size (ie, the tumor ecology) and include measure-
ments of the sensitive and resistant subpopulations (evolutionary
state and dynamics). Emerging technologies that investigate circu-
lating DNA and tumor cells42-44 will probably become key. New
image analytic tools (eg, radiomics45 and habitat imaging46) may
generate biomarkers for treatment-sensitive and treatment-
resistant intratumoral population through clinical computed tomog-
raphy and magnetic resonance imaging studies. Finally, even with
imperfect understanding of the resistance mechanisms and the size
of resistant subpopulations, judicious applications of initial therapy
can reveal the eco-evolutionary dynamics. As the cancer cells’ strat-
egies and future responses become unmasked, the physician
can adjust subsequent treatment cycles accordingly.
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