Real Analysis: Exercise Sheet 1

- 1. There are two quantifiers: \forall meaning 'for all' and \exists meaning 'there exists'. Decide whether the following statements are true or false.
 - (a) $\forall x \in \mathbb{R}, x^2 > 0.$ (b) $\forall y \in \mathbb{R}, y^3 < 0.$ (c) $\forall x \in \mathbb{R}, x^2 \ge 0.$ (d) $\forall x, y \in \mathbb{R}, x^2 + y^2 > 0.$ (e) $\forall x \in \mathbb{R}, x^2 < 0.$ (f) $\exists x \in \mathbb{R}$ such that $x^2 < 0$. (g) $\exists x \in \mathbb{R}$ such that $x^2 + x + 1 < 0$. (h) $\exists x \in \mathbb{R}$ such that $x^2 + x + 1 > 0$. (i) $\exists x \in \mathbb{R}$ such that $x^3 < 0$. (j) $\exists y \in \mathbb{R}$ such that $y^3 \ge 0$. (k) $\forall y, z \in \mathbb{R}, (y^2 < z^2 \Rightarrow y < z).$ (1) $\forall x, y \in \mathbb{R}, (x < y \Rightarrow x^2 < y^2).$ (m) $\forall x \in \mathbb{R}, (x^3 > 0 \Rightarrow x > 0).$ (n) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} \text{ such that } x > y.$ (o) $\forall y \in \mathbb{R}, \exists x \in \mathbb{R} \text{ such that } x > y.$ (p) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} \text{ such that } y - x^2 > 1000.$ (q) $\exists x \in \mathbb{R}$ such that $\forall y \in \mathbb{R} \ y \leq x$. (r) $\forall y \in \mathbb{R} \ \exists x \in \mathbb{R} \text{ such that } x^2 < y.$
 - (s) $\forall x \in \mathbb{R} \exists y \in \mathbb{R} \text{ such that } xy \ge 0.$
- 2. Give a proof of the following statement.

 $(x^2 \text{ irrational} \Rightarrow x \text{ irrational})$

Is the converse true?

- 3. Decide whether the following statements are true or false.
 - (a) x, y irrational $\Rightarrow x + y$ irrational.
 - (b) x, y irrational $\Rightarrow xy$ irrational.
- 4. Prove that if a > 0 then $a^{-1} > 0$.
- 5. Prove that $\forall x, y \in \mathbb{R}$ we have

$$xy \le \left(\frac{x+y}{2}\right)^2.$$