Real Analysis: Exercise Sheet 2

1. (a) Prove the following statement:

If $\forall \epsilon > 0$ we have $a < b + \epsilon$ then $a \leq b$.

(Hint: Prove this by contradiction. Assume that a > b, then a - b > 0 so we can pick $\epsilon = a - b > 0$ then...)

(b) Prove the following statement: Let $\epsilon > 0$. Then we have

 $|x - a| < \epsilon \quad \Leftrightarrow \quad a - \epsilon < x < a + \epsilon.$

(Hint: There are two things to prove: \Rightarrow and \Leftarrow . Use definition of $| | \rangle$)

- (c) Use (a) and (b) to deduce that if $\forall \epsilon > 0 |x a| < \epsilon$ then x = a.
- 2. Determine, if they exist, the maximum, minimum, supremum and infimum of the following sets.
 - (a) $\{x \in \mathbb{R} : a \le x \le b\}$
 - (b) $\{x \in \mathbb{R} : a < x \leq b\}$
 - (c) $\{x \in \mathbb{R} : a \le x < b\}$
 - (d) $\{-3, 5, 0, 103, 59\}$
 - (e) $\{1 + (-1)^n \frac{1}{n} : n \in \mathbb{N}\}$
 - (f) $\{1 + (-1)^n n : n \in \mathbb{N}\}$
 - (g) $\{x \in \mathbb{R} : 3x^2 10x + 3 < 0\}$
 - (h) $\{\frac{1}{2^n} \frac{1}{3^m} : n, m \in \mathbb{N}\}$
 - (i) $\{x \in \mathbb{R} : |x 1| < 2\}$
- 3. Show that given any element $x \in (0, \infty)$ there is another element $y \in (0, \infty)$ with the property that y < x. Deduce that $(0, \infty)$ has no minimum.
- 4. Prove that $S = \{\frac{n-1}{n} : n \in \mathbb{N}\}$ is bounded above and that its supremum is equal to 1. (Hint: First show that 1 is an upper bound for S. Then suppose, for a contradiction, that $\sup S = \alpha < 1$. Using corollary 1.3.2 from the lectures we can find a rational number $\alpha < \frac{p}{q} < 1$. Deduce that we can find an $n \in \mathbb{N}$ with $\alpha < \frac{n-1}{n}$, which contradicts the fact that α is an upper bound.)