Real Analysis: Exercise Sheet 5

1. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} x & \text{for } x < 0\\ 1 & \text{for } x = 0\\ 1 + x & \text{for } 0 < x < 1\\ 3 & \text{for } x = 1\\ 2x^2 & \text{for } x > 1 \end{cases}$$

Decide whether the following limits exist and if they do find their value.

- (a) $\lim_{x\to 0^-} f(x)$
- (b) $\lim_{x \to 0+} f(x)$
- (c) $\lim_{x\to 0} f(x)$
- (d) $\lim_{x\to 1} f(x)$

Hence determine where f is continuous and where it is not.

2. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} 3 - x & \text{for } x > 1\\ 1 & \text{for } x = 1\\ 2x & \text{for } x < 1 \end{cases}$$

Using the definitions of limits on the left and on the right to show that

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) = 2.$$

Is f continuous at x = 1?

- 3. (a) Prove that $|\sin x| \le |x|$ for all $x \in \mathbb{R}$ (where x is measured in radians).
 - (b) Use the identity $\cos x \cos a = 2\sin(\frac{x+a}{2})\sin(\frac{a-x}{2})$ to show that

$$|\cos x - \cos a| \le |x - a|.$$

- (c) Deduce that $f(x) = \cos x$ is continuous at every point a.
- 4. Using the Combination theorem and/or Sandwich rule for limits, show that the following limits exists and find their value.

(a)
$$\lim_{x\to 0} \frac{x \sin x}{1+x^2}$$

(b) $\lim_{x\to 0} \frac{2x^2+1}{3x^2+3x+1}$
(c) $\lim_{x\to 0} \frac{x \sin(1/x)}{1+x^2}$