- 1. Let $f : [a, b] \to \mathbb{R}$ be a function which is continuous on [a, b] and differentiable on (a, b). Use the Mean Value Theorem to prove
 - (a) If f'(x) < 0 for all $x \in (a, b)$ then f is strictly decreasing on [a, b].
 - (b) If f'(x) = 0 for all $x \in (a, b)$ then f is constant on [a, b].
- 2. Suppose $f, g: [a, b] \to \mathbb{R}$ are functions which are continuous on [a, b] and differentiable on (a, b). Prove that if f'(x) = g'(x) for all $x \in (a, b)$ then f(x) = g(x) +constant. (Hint: Use Question 1)
- 3. Use Rolle's Theorem to show that the polynomial $p(x) = x^3 + ax + b$ (with a > 0) has precisely one real root.
- 4. Use the Mean Value Theorem to prove that
 - (a) $|\sin(b) \sin(a)| \le |b a|$ for all $a, b \in \mathbb{R}$.
 - (b) $\frac{1}{10} < \sqrt{83} 9 < \frac{1}{9}$.
- 5. Decide whether the following statements are true or false. Justify your answers.
 - (a) For all functions $f : [a, b] \to \mathbb{R}$ there exists a point $c \in (a, b)$ such that f is differentiable at c and $f'(c) = \frac{f(b) f(a)}{b a}$.
 - (b) There exists a continuous function $f: [-1,1] \to \mathbb{R}$ with no $x \in (-1,1)$ such that f is differentiable at x and $f'(x) = \frac{f(1)-f(-1)}{2}$.
 - (c) Let $f: (a, b) \to \mathbb{R}$ be a function which is continuous on (a, b) and differentiable at $c \in (a, b)$. If f'(c) = 0 then f has a local minimum or maximum at x = c.