- 1. (a) Let S be a set of real numbers. Define what is meant by
 - i. S is bounded above.
 - ii. the real number H is an upper bound for S.
 - iii. the real number α is the supremum of S.
 - iv. the real number β is the maximum of S.
 - (b) Decide whether the following statements are true or false. Justify your answers.
 - i. Every set of real numbers which is bounded above has a maximum.
 - ii. If a set of real numbers has a maximum then it also has a supremum.
 - iii. There exists a set of real numbers with a supremum but no maximum.
 - (c) Find, if they exist, the supremum, infimum, maximum and minimum for the following sets of real numbers:
 - i. $\{x \in \mathbb{R} : |x+6| \le 2\}$ ii. $\{\frac{1}{3^n} - \frac{1}{5^m}, : n, m \in \mathbb{N}\}$ iii. $\{\frac{1}{3^n} + \frac{1}{5^m} : n, m \in \mathbb{N}\}$ iv. $\{x \in \mathbb{R} : 5x^2 + 9x - 2 < 0\}$
 - (d) Prove that the set [1,5) has no maximum. (Hint: Proof by contradiction).

- 2. (a) Define what is meant by 'the sequence of real numbers (x_n) converges to a limit l as n tends to infinity'. Use this definition to show that
 - i. the sequence $(x_n) = \left(\frac{6n-5}{2n+3}\right)$ converges to 3 as n tends to infinity. ii. the sequence (x_n) defined by

$$x_n = \begin{cases} \frac{1}{3} & \text{if } n \text{ is divisible by } 3\\ 0 & \text{otherwise} \end{cases}$$

does not converge to 0.

(b) Consider the sequence (x_n) defined by

$$x_1 = 3$$
 $7x_{n+1} = x_n^2 + 10$ for $n \ge 1$

- i. Show that $2 < x_n < 5$ for all $n \ge 1$.
- ii. Show that (x_n) is a decreasing sequence.
- iii. Deduce that (x_n) is convergent and find its limit.
- (c) Decide whether the following statements are true or false. Justify your answers.
 - i. All sequences in $(0, \frac{1}{2})$ are convergent.
 - ii. There exists a convergent sequence which is strictly decreasing.
 - iii. There exists a sequence which is neither bounded below nor bounded above.

- 3. (a) State the Intermediate Value Theorem.
 - (b) Use it to prove the following statement:
 If a function f : [a, b] → [a, b] is continuous then there exists a point x ∈ [a, b] such that f(x) = x.
 (Hint: consider the function g(x) = f(x) x)
 - (c) Using (a) and/or (b) show that
 - i. the equation $x = \cos(x)$ has a solution in the interval $[0, \frac{\pi}{2}]$.
 - ii. the polynomial $p(x) = x^4 + 2x^3 9$ has at least two real roots.
 - iii. the equation $2\tan(x) = 1 + \cos(x)$ has a solution in the interval $(0, \frac{\pi}{4})$.
 - (d) Decide whether the following statements are true or false. Justify your answers.
 - i. There exists a function $f : [0,1] \to [0,1]$ with no $x \in [0,1]$ satisfying f(x) = x.
 - ii. For every continuous function $f : (0,1) \to (0,1)$ we can find $x \in (0,1)$ satisfying f(x) = x.
 - iii. Every continuous function $f : (0, 1] \to \mathbb{R}$ attains a maximum value for some $x \in (0, 1]$.

- 4. (a) Let $f:(a,c) \to \mathbb{R}$ be a function.
 - i. Define what is meant by 'f is continuous at point $b \in (a, c)$ '.
 - ii. Define what is meant by 'f is differentiable at point $b \in (a, c)$ '.
 - iii. Prove that if f is differentiable at point b then f is continuous at point b.
 - iv. Give an example of a function which is continuous at some point but not differentiable at that point.
 - (b) Show that the function $f : \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} x+1 & \text{if } x \le 0\\ e^x & \text{if } x > 0 \end{cases}$$

is continuous and differentiable everywhere and find its derivative f'(x). Is f'(x) continuous everywhere? Is f'(x) differentiable everywhere?

(You may use the fact that the functions e^x and x are continuous and differentiable everywhere with derivative given by e^x and 1 respectively. You may also use any other standard results seen at the lecture provided you state them clearly).

- 5. (a) State the Mean Value Theorem.
 - (b) Use the Mean Value Theorem to prove the following statement: Let $f : [a, b] \to \mathbb{R}$ be a function which is continuous on [a, b] and differentiable on (a, b). If f'(x) > 0 for all $x \in (a, b)$ then f is strictly increasing on [a, b].
 - (c) Use the Mean Value Theorem to show that

i.

$$\frac{1}{8} < \sqrt{51} - 7 < \frac{1}{7}$$

ii.

$$1 - \frac{a}{b} < \ln \frac{b}{a} < \frac{b}{a} - 1$$
 (for $0 < a < b$).

iii.

$$\frac{b-a}{\sqrt{1-a^2}} < \sin^{-1}b - \sin^{-1}a < \frac{b-a}{\sqrt{1-b^2}} \qquad (\text{for } 0 < a < b < 1).$$

(You may use the fact that the function \sqrt{x} is continuous and differentiable for x > 0 and use its derivative. You may also use the fact that the functions $\ln(x)$ and $\sin^{-1}(x)$ are continuous on [a, b] and differentiable on (a, b) with derivative given by $\frac{1}{x}$ and $\frac{1}{\sqrt{1-x^2}}$ respectively.)

Internal Examiner:	Dr M. De Visscher
External Examiners:	Professor M.E. O'Neill
	Professor J. Billingham