
Real Analysis: Solutions to Exercise Sheet 1

1. (a) False. take x = 0, then x2 = 0.

(b) False. Take y = 1, then y3 = 1.

(c) True. Let’s prove it. Let x ∈ R, then either x > 0 or x = 0 or x < 0. We
consider these three cases separately. If x > 0 then x2 > 0.x = 0 using (O3) (with
c = x > 0), so in particular x2 ≥ 0. If x = 0 then x2 = 0 ≥ 0. Finally, if x < 0
then x2 > x.0 = 0 using (O4) (with c = x < 0), in particular, x2 ≥ 0.

(d) False. Take x = y = 0.

(e) False. take x = 1.

(f) True. There exists such an x, take x = 0.

(g) False. The polynomial x2 + x + 1 has no real roots, so the graph never crosses
the x-axis. Moreover, for x = 1, x2 + x + 1 = 3 > 0. Thus the graph is always
above the x-axis, i.e. x2 + x + 1 > 0 for all x ∈ R. Hence, there is no x such that
x2 + x + 1 < 0.

(h) True. Take x = 1.

(i) True. Take x = −1.

(j) True. Take y = 1.

(k) False. Take y = −1 and z = −2 then y2 < z2 but y > z.

(l) False. Take x = −2 and y = −1 then x < y but x2 > y2.

(m) True. We prove it by contradiction. Suppose x3 > 0 and assume for a contradic-
tion that x ≤ 0. If x = 0 then x3 = 0 but this is a contradiction. So we are left
with the case x < 0. Using (O4) (with c = x < 0) we get x2 > x.0 = 0. Using
(O4) again (with c = x < 0), we get x3 < x.0 = 0. This is a contradiction. Thus
we must have x > 0.

(n) True. For all x we can always take y = x− 1.

(o) True. For all y we can always take x = y + 1.

(p) True. For all x we can always take y = 1007 + x2.

(q) False. Suppose for a contradiction that such an x did exist, call it x0. Then for
all real numbers y, we should have y ≤ x0. In particular, this should be true for
y = x0 + 1 (which is a perfectly good real number). This means that we should
have x0 + 1 ≤ x0. But this is a contradiction.

(r) False. Take y = −1 then there is no x ∈ R such that x2 < y as x2 ≥ 0 and
y = −1 < 0.

(s) True. For all x we can take y = x then xy = x2 ≥ 0.
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2. Proof by contrapositive i.e. it is equivalent to show that

(x rational ⇒ x2 rational)

Let x = p
q

where p and q are integers. Then x2 = p2

q2 which is also rational. So we are
done.

The converse says (x irrational ⇒ x2 irrational). This is false as x =
√

2 is irrational
but x2 = 2 is rational.

3. (a) False. Take x = 1 −
√

2 and y = 1 +
√

2 then both x and y are irrational but
x + y = 2 which is rational (i.e. not irrational!).

(b) False. Take x = y =
√

2 then x and y are both irrational but xy = 2 which is
rational.

4. Done at the lecture (corollary 1.1.1).

5. This is slightly more complicated to prove so let us first unpack the inequality to see
what we get and then we’ll write a rigourous proof.

xy ≤
(

x + y

2

)2

=
(x + y)2

4
=

x2 + 2xy + y2

4

Thus, multiplying by 4 on both sides we get

4xy ≤ x2 + 2xy + y2

Substracting 4xy on both sides we get

0 ≤ x2 − 2xy + y2 = (x− y)2

This is certainly true as the square of a real number of always positive or zero.
Now we write a proper proof (going backward, starting from what we know).
Using question 1(c), we have

(x− y)2 ≥ 0,

so
x2 − 2xy + y2 ≥ 0

Now use (O2) (with c = 4xy) to add 4xy on both sides

x2 + 2xy + y2 ≥ 4xy.

Thus we have
(x + y)2 ≥ 4xy.

Now use (O3) (with c = 1
4

> 0) to divide both sides by 4 and get

(x + y)2

4
≥ xy,

and so we get (
x + y

2

)2

≥ 0, as required.
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