
Real Analysis: Solutions to Exercise Sheet 2

1. (a) Suppose, for a contradiction, that a > b, then a − b > 0. As a < b + ε for all
ε > 0, this should be true for ε = a− b. So we must have

a < b + (a− b) = a.

But this is a contradiction (cannot have a < a). Thus our assumption was false
and we must have a ≤ b as required.

(b) Start with ‘⇒’. We assume that |x−a| < ε and we want to prove that a−ε < x <
a + ε. Either x− a ≥ 0 or x− a < 0, we will consider these two cases separately.
First suppose x− a ≥ 0, then

x− a = |x− a| < ε

and so adding a on both sides using (O2) we get x < a + ε. On the other hand,
as x− a ≥ 0 and ε > 0 we have x− a > −ε. Adding a on both sides using (O2)
we get x > a− ε. So we are done in this case.

Next suppose x− a < 0, then

−(x− a) = |x− a| < ε

and multiplying both sides by (−1) using (O4) we get (x− a) > −ε. Now adding
a on both sides using (O2) we get x > a − ε. On the other hand x − a < 0 and
ε > 0 so we have x− a < ε. Adding a on both sides we get x < a + ε.

Now we turn to ‘⇐’. We assume that a − ε < x < a + ε and we want to prove
that |x− a| < ε. Subtracting a on both sides (using (O2) with c = −a), we get

−ε < x− a < ε.

If x − a ≥ 0 then |x − a| = x − a < ε so we are done. If x − a < 0 then
|x − a| = −(x − a). Now as −ε < x − a we get ε > −(x − a) (using (O4) with
c = −1). Thus we get |x− a| = −(x− a) < ε as required.

(c) For all ε > 0 we have |x − a| < ε. Using (b) this implies that x < a + ε for all
ε > 0. But then using (a), we have that x ≤ a. On the other hand, we also get
from (b) that a < x + ε for all ε > 0. So using (a) we get that a ≤ x. We have
proved that at the same time a ≤ x and x ≤ a, so we must have x = a.

2. (a) This set is equal to S = [a, b].
max S = b = sup S, min S = a = inf S.

(b) This set is equal to S = (a, b].
max S = b = sup S, S has no minimum, inf S = a.

(c) This set is equal to S = [a, b).
S has no maximum, sup S = b, min S = a = inf S.
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(d) min S = −3 = inf S, max S = 103 = sup S.

(e) min S = 0 = inf S, max S = 3
2

= sup S.

(f) This set is not bounded above, not bounded below, it has no maximum, no
minimum, no supremum and no infimum.

(g) The roots of the polynomial 3x2 − 10x + 3 are given by 1
3

and 3 and the graph
of the function f(x) = 3x2 − 10x + 3 is ‘facing upward’. Thus 3x2 − 10x + 3 < 0
precisely when 1

3
< x < 3. Thus this set can be rewritten as (1

3
, 3). So it has no

minimum, no maximum, its infimum is 1
3

and its supremum is 3.

(h) This set has no maximum, no minimum, its supremum is 1
2

and its infimum is
−1

3
.

(i) Using Exercise 1(b) above, this set can be rewritten as

{x ∈ R : −1 < x < 3} = (−1, 3),

so no maximum, no minimum, infimum equal to −1 and supremum equal to 3.

3. Let x ∈ (0,∞), then x > 0. We show that y = x
2

has the right property. Starting with
the inequality x > 0 and using (O3) (with c = 1

2
), we get x

2
> 0. Now adding x

2
on both

sides (using (O2) ) we get x > x
2
. Thus 0 < x

2
< x and we can take y = x

2
∈ (0,∞).

Now we need to deduce that (0,∞) has no minimum. Suppose, for a contradiction,
that it had a minimum m ∈ (0,∞). So m > 0, but by the above argument, we can
find y ∈ (0,∞) (namely y = m

2
) such that y < m. This contradicts the fact that m is

a mimimum. Thus (0,∞) has no minimum.

4. First we show that 1 is an upper bound. We have −1 < 0 and adding n on both sides
using (O2) we get n − 1 < n. Now dividing by n on both sides (i.e. using (O3) with
c = 1

n
> 0) we get n−1

n
< 1. This is true for all n ∈ N, so 1 is an upper bound for S.

We still need to show that 1 is the smallest upper bound. Suppose, for a contradiction,
that it is not the smallest upper bound. Then S has a smaller upper bound α, say,
with α < 1. Using Corollary 1.3.2 from the lecture we can find a rational number
between α and 1

α <
p

q
< 1.

As p
q

< 1 we have p ≤ q − 1 and so

α <
p

q
≤ q − 1

q
.

But this means that α is not an upper bound for S as if we take n = q we have n−1
n

> α.
This is a contradiction and so 1 is the smallest upper bound.
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