Real Analysis: Solutions to Exercise Sheet 3

1. (a) We need to find $N \in \mathbb{N}$ such that for all n > N we have

$$\left|\frac{n+3}{n} - 1\right| < 10^{-10}$$

So we want to know how large does n have to be in order to have

$$\left|\frac{n+3-n}{n}\right| = \left|\frac{3}{n}\right| = \frac{3}{n} < 10^{-10}.$$

This is equivalent to

$$n > 3.10^{10}$$
.

Thus if we take $N = 3.10^{10}$ then for all n > N we have

$$n > N = 3.10^{10}$$

and hence tracing the argument backwards we get that for all n > N we have

$$\left|\frac{n+3}{n} - 1\right| < 10^{-10}$$

as required.

(b) We need to find $N \in \mathbb{N}$ such that for all n > N we have

$$\left|\frac{6n+3}{5n+1} - \frac{6}{5}\right| < 10^{-15}.$$

So we want to know how large does n have to be in order to have

$$\left|\frac{6n+3}{5n+1} - \frac{6}{5}\right| = \left|\frac{9}{5(5n+1)}\right| = \frac{9}{5(5n+1)} < 10^{-15}$$

This is equivalent to

$$n > \frac{1}{25}(9.10^{15} - 5)$$

Thus if we take N to be the smallest (or in fact any) integer greater or equal to $\frac{1}{25}(9.10^{15}-5)$ then for all n > N we have

$$n > N \ge \frac{1}{25}(9.10^{15} - 5)$$

and hence tracing the argument backwards we get that for all n > N we have

$$\left|\frac{6n+3}{5n+1} - \frac{6}{5}\right| < 10^{-15}$$

as required.

(c) We need to find $N \in \mathbb{N}$ such that for all n > N we have

$$\left|\frac{9n+2}{3n+7} - 3\right| < 10^{-14}.$$

So we want to know how large does n have to be in order to have

$$\left|\frac{9n+2}{3n+7}-3\right| = \left|\frac{-19}{3n+7}\right| = \frac{19}{3n+7} < 10^{-14}.$$

This is equivalent to

$$n > \frac{1}{3}(19.10^{14} - 7).$$

Thus if we take N to be the smallest (or in fact any) integer greater or equal to $\frac{1}{3}(19.10^{14} - 7)$ then for all n > N we have

$$n > N \ge \frac{1}{3}(19.10^{14} - 7)$$

and hence tracing the argument backwards we get that for all n > N we have

$$\left|\frac{9n+2}{3n+7} - 3\right| < 10^{-14}$$

as required.

2. (a) Fix $\epsilon > 0$. We need to find $N \in \mathbb{N}$ such that for all n > N we have

$$|(1+\frac{1}{n})-1| < \epsilon.$$

So we want to know how large does n have to be in order to have

$$|(1+\frac{1}{n})-1| = |\frac{1}{n}| = \frac{1}{n} < \epsilon.$$

This is equivalent to

$$n>\frac{1}{\epsilon}.$$

Thus if we take N to be the smallest (or in fact any) integer greater or equal to $\frac{1}{\epsilon}$ then for all n > N we have

$$n > N \ge \frac{1}{\epsilon}$$

and hence tracing the argument backwards we get that for all n > N we have

$$|(1+\frac{1}{n})-1| < \epsilon$$

as required.

(b) Fix $\epsilon > 0$. We need to find $N \in \mathbb{N}$ such that for all n > N we have

$$|\frac{n^2-1}{n^2+1}-1|<\epsilon.$$

So we want to know how large does n have to be in order to have

$$\left|\frac{n^2 - 1}{n^2 + 1} - 1\right| = \left|\frac{-2}{n^2 + 1}\right| = \frac{2}{n^2 + 1} < \epsilon.$$

This is equivalent to

$$n^2 > \frac{2}{\epsilon} - 1.$$

Now either $\frac{2}{\epsilon} - 1 < 0$ and so the above equation is always satisfied, for any value of n and we can just take N = 1. Or $\frac{2}{\epsilon} - 1 \ge 0$. In this case if we take N to be the smallest (or in fact any) integer greater or equal to $\sqrt{\frac{2}{\epsilon} - 1}$ then for all n > N we have

$$n > N \ge \sqrt{\frac{2}{\epsilon}} - 1$$

so for all n > N we have

$$n^2 > \frac{2}{\epsilon} - 1$$

and hence tracing the argument backwards we get that for all n > N we have

$$\frac{n^2 - 1}{n^2 + 1} - 1| < \epsilon$$

as required.

(c) Fix $\epsilon > 0$. We want to find $N \in \mathbb{N}$ such that for all n > N we have

$$|\frac{n^2 + n + 1}{2n^2 + 1} - \frac{1}{2}| < \epsilon.$$

So we want to know how large does n have to be in order to have

$$\left|\frac{n^2+n+1}{2n^2+1} - \frac{1}{2}\right| = \left|\frac{2n+1}{2(2n^2+1)}\right| = \frac{2n+1}{2(2n^2+1)} < \epsilon.$$

Note that

$$\frac{2n+1}{2(2n^2+1)} < \frac{2n+1}{2(2n^2)} < \frac{2n+n}{4n^2} = \frac{3}{4n}$$

So if we have $\frac{3}{4n} < \epsilon$ then we also have $\frac{2n+1}{2(2n^2+1)} < \epsilon$. Now $\frac{3}{4n} < \epsilon$ is equivalent to

$$n > \frac{3}{4\epsilon}.$$

Thus if we take N to be the smallest (or in fact any) integer greater or equal to $\frac{3}{4\epsilon}$ then for all n > N we have

$$n > N \ge \frac{3}{4\epsilon}.$$

Hence, tracing the argument backwards we have for all n > N

$$\frac{3}{4n} < \epsilon$$

and also

$$|\frac{n^2 + n + 1}{2n^2 + 1} - \frac{1}{2}| < \epsilon$$

as required.

- 3. In each of these exercises, we need to find one particular ϵ for which it is not possible to find an appropriate $N(\epsilon)$.
 - (a) Take $\epsilon = 3$. We claim that it is not possible to find N(3) such that for all n > N(3) we have $|x_n 1| < 3$. Indeed, whatever choice we make for N(3) there will always be an even integer n > N(3) with $|x_n 1| = |-4 1| = 5 > 3$.
 - (b) Take $\epsilon = 1$. We claim that it is not possible to find N(1) such that for all n > N(1) we have $|x_n l| = |n l| < 1$. Indeed, whatever choice we make for N(1) there is always an integer n which is greater than N(1) and also greater that |l| + 1. For such n we have

$$|n - l| \ge |n| - |l| = n - |l| > 1$$

(using Theorem 1.1.6).

(c) Take $\epsilon = 2$. We claim that it is not possible to find N(2) such that for all n > N(2) we have $|x_n - 0| = x_n < 2$. Indeed, whatever choice we make for N(2) there is always an integer n > N(2) which is divisible by 5. For such an n we have

$$|x_n - 0| = x_n = 5 > 2.$$

4. I give here one example for each questions but there are of course many other examples.

(a)
$$(2 - \frac{1}{n})_{n=1}^{\infty}$$
.
(b) $(1, \frac{3}{2}, 1, \frac{3}{2}, 1, \frac{3}{2}, 1, \frac{3}{2}, ...)$.
(c) $((-1)^n n)_{n=1}^{\infty}$.

(d) $(-n)_{n=1}^{\infty}$.