
Real Analysis: Solutions to Exercise Sheet 3

1. (a) We need to find N ∈ N such that for all n > N we have

|n + 3

n
− 1| < 10−10.

So we want to know how large does n have to be in order to have

|n + 3− n

n
| = | 3

n
| = 3

n
< 10−10.

This is equivalent to
n > 3.1010.

Thus if we take N = 3.1010 then for all n > N we have

n > N = 3.1010

and hence tracing the argument backwards we get that for all n > N we have

|n + 3

n
− 1| < 10−10

as required.

(b) We need to find N ∈ N such that for all n > N we have

|6n + 3

5n + 1
− 6

5
| < 10−15.

So we want to know how large does n have to be in order to have

|6n + 3

5n + 1
− 6

5
| = | 9

5(5n + 1)
| = 9

5(5n + 1)
< 10−15.

This is equivalent to

n >
1

25
(9.1015 − 5).

Thus if we take N to be the smallest (or in fact any) integer greater or equal to
1
25

(9.1015 − 5) then for all n > N we have

n > N ≥ 1

25
(9.1015 − 5)

and hence tracing the argument backwards we get that for all n > N we have

|6n + 3

5n + 1
− 6

5
| < 10−15

as required.
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(c) We need to find N ∈ N such that for all n > N we have

|9n + 2

3n + 7
− 3| < 10−14.

So we want to know how large does n have to be in order to have

|9n + 2

3n + 7
− 3| = | −19

3n + 7
| = 19

3n + 7
< 10−14.

This is equivalent to

n >
1

3
(19.1014 − 7).

Thus if we take N to be the smallest (or in fact any) integer greater or equal to
1
3
(19.1014 − 7) then for all n > N we have

n > N ≥ 1

3
(19.1014 − 7)

and hence tracing the argument backwards we get that for all n > N we have

|9n + 2

3n + 7
− 3| < 10−14

as required.

2. (a) Fix ε > 0. We need to find N ∈ N such that for all n > N we have

|(1 +
1

n
)− 1| < ε.

So we want to know how large does n have to be in order to have

|(1 +
1

n
)− 1| = | 1

n
| = 1

n
< ε.

This is equivalent to

n >
1

ε
.

Thus if we take N to be the smallest (or in fact any) integer greater or equal to
1
ε

then for all n > N we have

n > N ≥ 1

ε

and hence tracing the argument backwards we get that for all n > N we have

|(1 +
1

n
)− 1| < ε

as required.
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(b) Fix ε > 0. We need to find N ∈ N such that for all n > N we have

|n
2 − 1

n2 + 1
− 1| < ε.

So we want to know how large does n have to be in order to have

|n
2 − 1

n2 + 1
− 1| = | −2

n2 + 1
| = 2

n2 + 1
< ε.

This is equivalent to

n2 >
2

ε
− 1.

Now either 2
ε
− 1 < 0 and so the above equation is always satisfied, for any value

of n and we can just take N = 1. Or 2
ε
− 1 ≥ 0. In this case if we take N to

be the smallest (or in fact any) integer greater or equal to
√

2
ε
− 1 then for all

n > N we have

n > N ≥
√

2

ε
− 1

so for all n > N we have

n2 >
2

ε
− 1

and hence tracing the argument backwards we get that for all n > N we have

|n
2 − 1

n2 + 1
− 1| < ε

as required.

(c) Fix ε > 0. We want to find N ∈ N such that for all n > N we have

|n
2 + n + 1

2n2 + 1
− 1

2
| < ε.

So we want to know how large does n have to be in order to have

|n
2 + n + 1

2n2 + 1
− 1

2
| = | 2n + 1

2(2n2 + 1)
| = 2n + 1

2(2n2 + 1)
< ε.

Note that
2n + 1

2(2n2 + 1)
<

2n + 1

2(2n2)
<

2n + n

4n2
=

3

4n
.

So if we have 3
4n

< ε then we also have 2n+1
2(2n2+1)

< ε. Now 3
4n

< ε is equivalent to

n >
3

4ε
.

Thus if we take N to be the smallest (or in fact any) integer greater or equal to
3
4ε

then for all n > N we have

n > N ≥ 3

4ε
.
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Hence, tracing the argument backwards we have for all n > N

3

4n
< ε

and also

|n
2 + n + 1

2n2 + 1
− 1

2
| < ε

as required.

3. In each of these exercises, we need to find one particular ε for which it is not possible
to find an appropriate N(ε).

(a) Take ε = 3. We claim that it is not possible to find N(3) such that for all n > N(3)
we have |xn−1| < 3. Indeed, whatever choice we make for N(3) there will always
be an even integer n > N(3) with |xn − 1| = | − 4− 1| = 5 > 3.

(b) Take ε = 1. We claim that it is not possible to find N(1) such that for all n > N(1)
we have |xn− l| = |n− l| < 1. Indeed, whatever choice we make for N(1) there is
always an integer n which is greater than N(1) and also greater that |l|+ 1. For
such n we have

|n− l| ≥ |n| − |l| = n− |l| > 1

(using Theorem 1.1.6).

(c) Take ε = 2. We claim that it is not possible to find N(2) such that for all n > N(2)
we have |xn − 0| = xn < 2. Indeed, whatever choice we make for N(2) there is
always an integer n > N(2) which is divisible by 5. For such an n we have

|xn − 0| = xn = 5 > 2.

4. I give here one example for each questions but there are of course many other examples.

(a) (2− 1
n
)∞n=1.

(b) (1, 3
2
, 1, 3

2
, 1, 3

2
, 1, 3

2
, ...).

(c) ((−1)nn)∞n=1.

(d) (−n)∞n=1.
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