
Real Analysis: Solutions to Exercise Sheet 5

1. (a) limx→0− f(x) = 0.

(b) limx→0+ f(x) = 1.

(c) limx→0 f(x) does not exist as limx→0− 6= limx→0+.

(d) limx→1− f(x) = limx→1−(1 + x) = 2 and limx→1+ f(x) = limx→1+ 2x2 = 2 so
limx→1 f(x) exists and is equal to 2.

f is continuous everywhere (using Combination theorem) except at the point x = 0 (as
limx→0 f(x) does not exists) and at the point x = 1 (as 3 = f(1) 6= limx→1 f(x) = 2).

2. Recall the definitions of limit on the left and limit on the right.

We say that limx→b− f(x) = l if ∀ε > 0 we can find a δ > 0 (which depends on ε) such
that ∀x with b− δ < x < b we have |f(x)− l| < ε.

We say that limx→b+ f(x) = l if ∀ε > 0 we can find a δ > 0 (which depends on ε) such
that ∀x with b < x < b + δ we have |f(x)− l| < ε.

Let us first prove that limx→1− f(x) = 2.

Fix ε > 0. We need to find δ > 0 (which depends on ε) such that whenever 1−δ < x < 1
we have |f(x)− 2| < ε. Now as x tends to 1 from the left we have x < 1 and so in this
case f(x) = 2x. We want to have

|f(x)− 2| = |2x− 2| = 2|x− 1| < ε.

Take δ = ε
2
. Then for x with 1− ε

2
< x < 1, we have |x− 1| = 1− x < ε

2
and so

|f(x)− 2| = 2|x− 1| < 2
ε

2
= ε

as required.

Now we prove that limx→1+ f(x) = 2.

Fix ε > 0. We need to find δ > 0 (which depends on ε) such that whenever 1 < x < 1+δ
we have |f(x) − 2| < ε. Now as x tends to 1 from the right we have x > 1 and so in
this case f(x) = 3− x. We want to have

|f(x)− 2| = |3− x− 2| = |1− x| < ε.

Take δ = ε. Then for x with 1 < x < 1 + ε, we have |1− x| = x− 1 < ε and so

|f(x)− 2| = |1− x| < ε

as required.

As the limit on the left and on the right coincide we have that limx→1 f(x) exists and
is equal to 2. But as f(1) = 1 6= 2 the function f is not continuous at the point x = 1.
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3. (a) As | sin(x)| ≤ 1, the result is clear for |x| ≥ 1. Thus we can certainly assume
that −π

2
< −1 < x < 1 < π

2
. We will prove the result when 0 ≤ x < π

2
(the case

−π
2

< x ≤ 0 is similar). Take a disc of radius 1. Then the area of the disc is π.
and so the area of the portion of the disc defined by x is given by x

2
.

Now the area of the triangle defined by the angle x (see above picture) is given

by sin(x)
2

. This is always less or equal to the portion of the disc defined by x i.e.
we have

sin(x)

2
≤ x

2
.

But this implies
sin(x) ≤ x

as required.

(b)

| cos(x)− cos(a)| = |2 sin

(
x + a

2

)
sin

(
a− x

2

)
|

= 2| sin
(

x + a

2

)
|.| sin

(
a− x

2

)
|

≤ 2| sin
(

a− x

2

)
| as | sin

(
x+a

2

)
| ≤ 1

≤ 2|a− x

2
| = |x− a| using (a)

(c) Recall the definition of continuity at a point a. We say that a function f is
continuous at a point a if ∀ε > 0, we can find a δ > 0 (depending on ε) such that
∀x with |x− a| < δ we have |f(x)− f(a)| < ε.

Fix ε > 0. We need to find a δ > 0 such that whenever |x − a| < δ we have
| cos(x)− cos(a)| < ε.

Now note that using (b) we have

| cos(x)− cos(a)| ≤ |x− a|.

So if we take δ = ε then for all x’s with |x− a| < δ = ε we have

| cos(x)− cos(a)| ≤ |x− a| < ε

as required.
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4. (a) First note that
−|x|

1 + x2
≤ x sin(x)

1 + x2
≤ |x|

1 + x2
.

Now using the Combination theorem we see that

lim
x→0

−|x|
1 + x2

= 0

and

lim
x→0

|x|
1 + x2

= 0.

Thus using the Sandwich rule we have

lim
x→0

x sin(x)

1 + x2
= 0.

(b) Using the combination theorem we see that

lim
x→0

2x2 + 1

3x2 + 3x + 1
=

2.0 + 1

3.0 + 3.0 + 1
= 1.

(c) First note that
−|x|

1 + x2
≤ x sin(1/x)

1 + x2
≤ |x|

1 + x2
.

So using the combination theorem and Sandwich rule just as in (a) we get

lim
x→0

x sin(1/x)

1 + x2
= 0.
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