Real Analysis: Solutions to Exercise Sheet 8

1. (a) Let $x_1 < x_2 \in [a, b]$. We want to show that $f(x_1) > f(x_2)$. As f satisfies the hypotheses of the Mean Value Theorem on [a, b] it also does on $[x_1, x_2]$. So applying the MVT to f on $[x_1, x_2]$ we can find $c \in (x_1, x_2)$ such that

$$f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} < 0$$

by assumption. As $x_2 - x_1 > 0$ we must have $f(x_2) - f(x_1) < 0$ and so $f(x_2) < f(x_1)$ as required.

(b) Let $x_1 < x_2 \in [a, b]$. We want to show that $f(x_1) = f(x_2)$. As f satisfies the hypotheses of the Mean Value Theorem on [a, b] it also does on $[x_1, x_2]$. So applying the MVT to f on $[x_1, x_2]$ we can find $c \in (x_1, x_2)$ such that

$$f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = 0$$

by assumption. So we have $f(x_2) - f(x_1) = 0$ and thus $f(x_2) = f(x_1)$ as required.

2. Consider the function h(x) = f(x) - g(x). Then h is continuous on [a, b] and differentiable on (a, b) (as f and g are). Moreover we have

$$h'(x) = f'(x) - g'(x) = 0$$

by assumption. Thus applying the result in question 1 (b) we get that h(x) = k a constant. Thus h(x) = f(x) - g(x) = k and so f(x) = g(x) + k as required.

- 3. We can always find x_1 such that $p(x_1) = x_1^3 + ax_1 + b > 0$ (take x_1 large enough so that $x_1^3 + ax_1 > -b$). Also we can find x_2 such that $p(x_2) < 0$ (take x_2 large negative such that $x_2^3 + ax_2 < -b$). So applying the Intermediate Value Theorem, the polynomial p(x) has a real root. Now we need to show that it has only one root. Suppose for a contradiction that it had two real roots a and b. This means that p(a) = p(b) = 0. So we can apply Rolle's theorem and get $c \in (a, b)$ with p'(c) = 0. But $p'(x) = 3x^2 + a > 0$ (as a > 0). This is a contradiction.
- 4. (a) Consider the function $f : [a, b] \to \mathbb{R}$ defined by $f(x) = \sin(x)$. Then f is continuous on [a, b] and differentiable on (a, b) so we can apply the Mean Value Theorem to get $c \in (a, b)$ with

$$\frac{\sin(b) - \sin(a)}{b - a} = \cos(c).$$

Now take the absolute value on both sides to get

$$\frac{|\sin(b) - \sin(a)|}{|b - a|} = |\cos(x)| \le 1.$$

Multiplying both sides of the inequality by |b - a| we get

$$|\sin(b) - \sin(a)| \le |b - a|$$

as required.

(b) Consider the function $f : [81, 83] \to \mathbb{R}$ defined by $f(x) = \sqrt{x}$. Then f is continuous on [81, 83] and differentiable on (81, 83) so we can apply the Mean Value Theorem to get $c \in (81, 83)$ with

$$\frac{\sqrt{83} - \sqrt{81}}{83 - 81} = \frac{1}{2} \cdot \frac{1}{\sqrt{c}}.$$

Thus we get

$$\sqrt{83} - 9 = \frac{1}{\sqrt{c}}.$$

As 81 < c < 83 we have $\frac{1}{\sqrt{83}} < \frac{1}{\sqrt{c}} < \frac{1}{9}$. Also we have $\frac{1}{\sqrt{100}} < \frac{1}{\sqrt{83}}$. Thus we get $\frac{1}{10} < \sqrt{83} - 9 < \frac{1}{9}$.

5. (a) False. Take $f : [0, 2] \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} 1 & 0 \le x \le 1\\ 2 & 1 < x \le 2 \end{cases}$$

Then there is no $c \in (0,2)$ with $f'(c) = \frac{2-1}{2-0} = \frac{1}{2}$. (Draw a graph of f(x) to see that).

- (b) True. Take $f: [-1, 1] \to \mathbb{R}$ defined by f(x) = |x|. Then f is continuous but there is no $c \in (-1, 1)$ with $f'(c) = \frac{1-1}{2} = 0$.
- (c) False. Take $f(x) = x^3$. Then f'(0) = 0 but f has no maximum or minimum at x = 0.