
Real Analysis: Solutions

1. (a) i. The set S is bounded above if there exists H ∈ R such that x ≤ H for all
x ∈ S.

ii. The real number H is called an upper bound for S if x ≤ H for all x ∈ S.

iii. The real number α is the supremum of S if α is the smallest upper bound for
S.

iv. The real number β is the maximum of S if β ∈ S and x ≤ β for all x ∈ S.

[2]

(b) i. False. Take for example S = [0, 1) then S is bounded above (by 1) but it has
no maximum.

ii. True. Let β be the maximum of S then we claim that β is also the supremum.
As x ≤ β for all x ∈ S, we have that β is an upper bound. Moreover it is the
smallest upper bound as β ∈ S and so any H < β cannot be an upper bound
for S.

iii. True. Take S = [0, 1) then 1 is the supremum of S but S has no maximum.

[6]

(c) i. This set is equal to [−8,−4]. min=inf=−8, max=sup=−4.

ii. inf=−1
5
, sup=1

3
, no max, no min.

iii. inf=0, no min, max=sup= 8
15

.

iv. Factorising 5x2 + 9x − 2 = (5x − 1)(x + 2) we see that this set is equal to
(−2, 1

5
). no min, no max, inf=−2, sup=1

5
.

[8]

(d) Suppose, for a contradiction that [1, 5) had a maximum, call it M . As M ∈ [1, 5)
we have 1 ≤ M < 5. Consider the number M+5

2
. We have

1 ≤ M <
M + 5

2
< 5.

So M+5
2
∈ [1, 5) and M < M+5

2
this contradicts the maximality of M . Thus [1, 5)

has no maximum.

[4]

2. (a) For all ε > 0, there exists N ∈ N such that ∀n > N we have |xn − l| < ε.

i. Fix ε > 0. We want to find N such that ∀n > N we have

|6n− 5

2n + 3
− 3| = 14

2n + 3
< ε.
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This is equivalent to finding N such that ∀n > N we have

2n >
14

ε
− 3

or

n >
7

ε
− 3

2
.

Take N to be the smallest (or in fact any) integer greater or equal to 7
ε
− 3

2
.

Then for all n > N we have

n > N ≥ 7

ε
− 3

2

and so

|6n− 5

2n + 3
− 3| < ε

as required.

ii. Take ε = 1
6
, then we cannot find an appropriate N . Indeed, whatever N

might be, we can always find a multiple of 3, n say, which is greater than N
and in this case we have

|xn − 0| = 1

3
>

1

6
.

[8]

(b) i. We prove this by induction on n. For n = 1 the result is clear as 2 < x1 =
3 < 5. Now suppose the result holds for n and prove it for n + 1. We have

14 < 7xn+1 = x2
n + 10 < 35

and so
2 < xn+1 < 5

as required.

ii.

xn+1 − xn =
1

7
(x2

n + 10)− xn

=
1

7
(x2

n − 7xn + 10)

=
1

7
(xn − 2)(xn − 5) < 0

using the first part.

iii. As (xn) is decreasing and bounded below it is convergent. In order to find
its limit, l say, we take the limit as n tends to infinity on both sides of the
equation

7xn+1 = x2 + 10.
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Using the Combination theorem for limits we get

7l = l2 + 10

and so l2 − 7l + 10 = 0 and l = 2 or 5. As (xn) is decreasing and 2 < xn < 5
we must have l = 2.

[6]

(c) i. False. Take (xn) = (1
3
, 1

4
, 1

3
, 1

4
, 1

3
, 1

4
, ...) then (xn) is not convergent.

ii. True. Take (xn) = ( 1
n
).

iii. True. Take (xn) = ((−1)nn).

[6]

3. (a) Let f : [a, b] → R be a continuous function. Suppose that f(a) = α and f(b) = β
then for every γ between α and β there is a < c < b satisfying f(c) = γ.

[2]

(b) Consider the function g : [a, b] → R defined by g(x) = f(x) − x. Then g is
continuous on [a, b]. Moreover we have

g(a) = f(a)− a ≥ 0,

g(b) = f(b)− b ≤ 0.

If f(a) = a or f(b) = b then we are done. So assume that f(a) 6= a and f(b) 6= b
then we have

g(a) = f(a)− a > 0,

g(b) = f(b)− b < 0.

Using the intermediate value theorem we can find a < c < b with g(c) = 0. This
means that f(c)− c = 0 and so f(c) = c as required.

[6]

(c) i. Consider the function f : [0, π
2
] → [0, π

2
] defined by f(x) = cos(x). Then f is

continuous so applying (b) we know that f has a fixed point in the interval
[0, π

2
].

ii. First note that p(x) is continuous everywhere. Now we have p(0) = −9 < 0,
p(2) = 23 > 0 and p(−3) = 18 > 0. Thus applying the intermediate value
theorem twice we see that p(x) has one root in the interval (−3, 0) and one
root in the interval (0, 2).

iii. Consider the function f(x) = 2 tan(x) − 1 − cos(x) then f(x) is continuous
on [0, π

4
]. Now f(0) = −2 and f(π

4
) = 1 − 1√

2
> 0. Thus applying the

intermediate value theorem we see that f(x) = 0 for some x ∈ (0, π
4
).

[6]
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(d) i. True. Take f : [0, 1] → [0, 1] defined by

f(x) =

{
1 x 6= 1
0 x = 1

ii. False. Take f : (0, 1) → (0, 1) defined by f(x) = x2. Then f is continuous
but there is no x with x2 = x (as 0 and 1 do not belong to the domain).

iii. False. Take f : (0, 1] → R defined by f(x) = 1
x
. Then f is continuous but it

does not attain a maximum value (as it is not bounded).

[6]

4. (a) i. f is continuous at point b ∈ (a, c) if and only if limx→b f(x) exists and is equal
to f(b).

ii. f is differentiable at point b ∈ (a, c) if and only if

lim
x→b

f(x)− f(b)

x− b
exists.

In this case the value of this limit is denoted by f ′(b).

iii. Consider the function Fb : (a, c) → R defined by

Fb(x) =

{
f(x)−f(b)

x−b
x 6= b

f ′(b) x = b

Then Fb is continuous at point b as limx→b
f(x)−f(b)

x−b
exists and is equal to f ′(b).

Now f(x) = Fb(x)(x − b) + f(b) for all x. Thus f is continuous at b (using
Combination theorem).

iv. Take f(x) = |x|. Then f is continuous everywhere but it is not differentiable
at x = 0.

[10]

(b) As x+1 and ex are continuous for all x, we have that f(x) is continuous for x 6= 0.
Now we have

lim
x→0−

f(x) = lim
x→0−

(x + 1) = 1

and
lim

x→0+
f(x) = lim

x→0+
ex = 1

so limx→0 f(x) exists and is equal to 1 = f(0). Thus f is continuous at x = 0.

As x + 1 and ex are differentiable for all x, we have that f(x) is differentiable for
x 6= 0. Now we have

lim
x→0−

f(x)− f(0)

x
= lim

x→0−

x

x
= 1

and

lim
x→0+

f(x)− f(0)

x
= lim

x→0+

ex − 1

x
= 1
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so limx→0
f(x)−f(0)

x
exists and is equal to 1. Thus f is differentiable at x = 0.

The derivative f ′(x) of f(x) is given by

f ′(x) =

{
1 x ≤ 0
ex x > 0

For x 6= 0, f ′(x) is continuous (as 1 and ex are continuous). For x = 0, let us
consider the limit of f ′(x) as x → 0.

lim
x→0+

f ′(x) = lim
x→0+

1 = 1,

lim
x→0−

f ′(x) = lim
x→0−

ex = 1.

Thus limx→0 f ′(x) exists and is equal to 1 = f ′(0). Hence f ′(x) is continuous
everywhere.

For x 6= 0, f ′(x) is differentiable (as 1 and ex are differentiable). For x = 0, let
us consider

lim
x→0+

f ′(x)− f ′(0)

x− 0
= lim

x→0+

1− 1

x
= 0,

lim
x→0−

f ′(x)− f ′(0)

x− 0
= lim

x→0−

ex − 1

x
= 1.

Thus limx→0
f ′(x)−f ′(0)

x−0
doesn’t exists and f ′(x) is not differentiable at x = 0.

[10]

5. (a) Let f : [a, b] → R be continuous on [a, b] and differentiable on (a, b). Then there
exists a < c < b with

f(b)− f(a)

b− a
= f ′(c).

[2]

(b) Let a ≤ x1 < x2 ≤ b. We want to show that f(x1) < f(x2). Apply the Mean
Value Theorem to f : [x1, x2] → R to get x1 < c < x2 with

f ′(c) =
f(x2)− f(x1)

x2 − x1

.

By assumption we have f ′(c) > 0 and so f(x2)−f(x1)
x2−x1

> 0. Now as x2 > x1 we must
have f(x2) > f(x1) as required.

[6]

(c) i. Using the MVT for f : [49, 51] → R given by f(x) =
√

x we can find 49 <
c < 51 such that

f ′(c) =
1

2
.

1√
c

=
f(51)− f(49)

51− 49
=

√
51− 7

2
.
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As 49 < c < 51 we have

1

2
.

1√
51

<

√
51− 7

2
<

1

2
.
1

7

and hence (as 1
8

< 1√
51

) we have

1

8
<
√

51− 7 <
1

7

as required.

ii. Using the MVT for f : [a, b] → R given by f(x) = ln(x) we can find a < c < b
such that

f ′(c) =
1

c
=

ln(b)− ln(a)

b− a
.

So we get
1

b
<

ln(b)− ln(a)

b− a
<

1

a
.

And hence

1− a

b
< ln(

b

a
) <

b

a
− 1

as required.

iii. Using the MVT for f : [a, b] → R given by f(x) = sin−1(x) we can find
0 < a < c < b < 1 such that

f ′(c) =
1√

1− c2
=

sin−1(b)− sin−1(a)

b− a
.

So we get
b− a√
1− a2

< sin−1(b)− sin−1(a) <
b− a√
1− b2

as required.

[12]
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