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Real Analysis: Solutions

i. The set S is bounded above if there exists H € R such that x < H for all

reSs.
The real number H is called an upper bound for S if + < H for all z € S.
The real number « is the supremum of S if « is the smallest upper bound for

S.
The real number 3 is the maximum of S if 3 € S and x <  for all x € S.

2]

i. False. Take for example S = [0,1) then S is bounded above (by 1) but it has

no maximum.

True. Let (8 be the maximum of S then we claim that [ is also the supremum.
As xz < g for all x € S, we have that 3 is an upper bound. Moreover it is the
smallest upper bound as # € S and so any H < (3 cannot be an upper bound
for S.

True. Take S = [0,1) then 1 is the supremum of S but S has no maximum.

[6]

i. This set is equal to [—-8, —4]. min=inf=—8, max=sup=—4.

. - 1 1 .
inf=—%, sup=3, no max, no min.

8

E.

Factorising 522 + 9z — 2 = (5z — 1)(z + 2) we see that this set is equal to
(-2, %) no min, no max, inf=—2, sup:%.

inf=0, no min, max=sup=

8]

(d) Suppose, for a contradiction that [1,5) had a maximum, call it M. As M € [1,5)
we have 1 < M < 5. Consider the number % We have

M +5

1< M < < b.

So &+ € [1,5) and M < 245 this contradicts the maximality of M. Thus [1,5)
has no maximum.

[4]

(a) For all € > 0, there exists N € N such that Vn > N we have |z, — | <e.

i.

Fix € > 0. We want to find N such that Vn > N we have

|6n—5 3|_ 14
on+3  2n+3

< €.



ii.

ii.

iii.

This is equivalent to finding N such that Vn > N we have

14
2n > — —3
€
or
- 7 3
n>-—-.
€ 2
Take N to be the smallest (or in fact any) integer greater or equal to % — %

Then for all n > N we have

n>]\/>z—§
e 2
and so
|6n—5 3] <
- €
2n+3

as required.

Take ¢ = %, then we cannot find an appropriate N. Indeed, whatever N
might be, we can always find a multiple of 3, n say, which is greater than N
and in this case we have

=

>

Wl =

|z, — 0] =
8]

We prove this by induction on n. For n = 1 the result is clear as 2 < z; =
3 < 5. Now suppose the result holds for n and prove it for n + 1. We have

14 < Tap =22 +10 < 35

and so
2< Ty <5
as required.
Lo,
Tpy1l — Tp = ?(xn +10) — x,
1
= ?(azi — Tz, + 10)
1
= ?(xn —2)(x, —5) <0

using the first part.

As (z,) is decreasing and bounded below it is convergent. In order to find
its limit, [ say, we take the limit as n tends to infinity on both sides of the
equation

7l‘n+1 = IQ + 10.



3. (a)

()

Using the Combination theorem for limits we get
71=1+10

and so > =Tl +10=0and [ =2 or 5. As (x,) is decreasing and 2 < x,, <5
we must have [ = 2.

[6]
i. False. Take (z,) = (3, %,3. 1,3 3. ---) then () is not convergent.
ii. True. Take (z,) = (%).
ili. True. Take (x,) = ((—1)"n).
[6]

Let f : [a,b] — R be a continuous function. Suppose that f(a) = « and f(b) = [
then for every v between o and 3 there is a < ¢ < b satisfying f(c) = .

2]

Consider the function g : [a,b] — R defined by g(z) = f(z) — x. Then g is
continuous on [a, b]. Moreover we have

g(a) = f(a) —a =0,

g(b) = f(B) — b < 0.

If f(a) =a or f(b) = b then we are done. So assume that f(a) # a and f(b) # b
then we have

f(a) —a >0,
g(b) = f(b) = b <0.

Using the intermediate value theorem we can find a < ¢ < b with g(c¢) = 0. This
means that f(c) — ¢ =0 and so f(c) = ¢ as required.

KQ
—~
S
~—
I

[6]

i. Consider the function f : [0,%] — [0, 3] defined by f(x) = cos(z). Then f is
continuous so applying (b) we know that f has a fixed point in the interval

0.3).
ii. First note that p(z) is continuous everywhere. Now we have p(0) = —9 < 0,
p(2) =23 > 0 and p(—3) = 18 > 0. Thus applying the intermediate value
theorem twice we see that p(z) has one root in the interval (—3,0) and one

root in the interval (0, 2).

ili. Consider the function f(z) = 2tan(z) — 1 — cos(x) then f(x) is continuous
on [0,%7]. Now f(0) = —2 and f(§) = 1 — \% > 0. Thus applying the
intermediate value theorem we see that f(z) = 0 for some z € (0, 7).

[6]



(d) i. True. Take f:[0,1] — [0, 1] defined by
ro={o 7

rz=1
ii. False. Take f : (0,1) — (0,1) defined by f(z) = x*. Then f is continuous
but there is no x with z2 = z (as 0 and 1 do not belong to the domain).
iii. False. Take f : (0,1] — R defined by f(x) = 1. Then f is continuous but it
does not attain a maximum value (as it is not bounded).

[6]

(a) 1. fis continuous at point b € (a, ¢) if and only if lim, ., f(z) exists and is equal
to f(b).
ii. f is differentiable at point b € (a, ¢) if and only if

i 1) = S 0)

exists.
x—b z—0b

In this case the value of this limit is denoted by f(b).
iii. Consider the function Fj : (a,c¢) — R defined by

[ em gy
Fb(m)_{ o) z=b

Then F} is continuous at point b as lim,_.; (x) f ®) oxists and is equal to f(b).
Now f(x) = Fy(z)(z — b) + f(b) for all z. Thus f is continuous at b (using
Combination theorem).
iv. Take f(x) = |z|. Then f is continuous everywhere but it is not differentiable
at x = 0.
[10]

(b) Asxz+1 and e” are continuous for all z, we have that f(z) is continuous for z # 0.

Now we have
lim f(z)= lim (z+1)=1

r—0— r—0—

and

a:li%l—&— f(.f) - a:li}’(l)l—&— €= 1

so lim,_o f(z) exists and is equal to 1 = f(0). Thus f is continuous at z = 0.

As 2+ 1 and e” are differentiable for all z, we have that f(x) is differentiable for
x # 0. Now we have

i LSO Ty
z—0— T z—0— T
and 0 _
lim f(m)—f():hme— =1
z—0+ xT z—0+ T



(c)

so lim,_ £ (x);f © exists and is equal to 1. Thus f is differentiable at = = 0.
The derivative f'(x) of f(z) is given by

1 =<0

/ —
ra={ L 5
For x # 0, f'(z) is continuous (as 1 and e” are continuous). For z = 0, let us
consider the limit of f'(z) as z — 0.

. ! . . o
xli%l—l—f ($> o xll>r[l)1+1 N 1’

. / T z
g o) = Jig =1
Thus lim, o f'(x) exists and is equal to 1 = f/(0). Hence f'(x) is continuous
everywhere.
For x # 0, f'(x) is differentiable (as 1 and e® are differentiable). For = 0, let

us consider ) - _
) = ) 1

= lim =0,
z—0+ x—0 z—0+ T
/ _f T _ 1
i LB = SMO0) e —1.
z—0— xr — 0 z—0— x

Thus lim, g % doesn’t exists and f'(x) is not differentiable at x = 0.

[10]

Let f : [a,b] — R be continuous on [a, b] and differentiable on (a,b). Then there
exists a < ¢ < b with
f(b) = f(a)

),

2]

Let a < x1 < 23 < b. We want to show that f(z1) < f(x2). Apply the Mean
Value Theorem to f : [z1, 23] — R to get z1 < ¢ < x5 with

f/(c) _ f(xQ) B f(xl)
T2 — X1
By assumption we have f’(¢) > 0 and so % > 0. Now as o > 1 we must
have f(z2) > f(x1) as required.

[6]
i. Using the MVT for f : [49,51] — R given by f(x) = y/z we can find 49 <
¢ < 51 such that

1 f(51) = f49) _ VB1-7
Je oo s1—49 2

fle) =5

5



ii.

1il.

As 49 < ¢ < 51 we have

N | —
|

1 1
and hence (as § < F) we have

[y

1 1
— <Vl -T7T< =
8 7

as required.

Using the MVT for f : [a,b] — R given by f(z) = In(z) we can finda < ¢ < b

such that
1 In(b) —In(a)

/ = - =
f(c>_c b—a

So we get

1 - In(b) —In(a) 1

b b—a a
And hence )

l—-—<n(-)<--1

a a

as required.
Using the MVT for f : [a,b] — R given by f(x) = sin"'(z) we can find
0 <a < c<b<1such that

1 sin”'(b) —sin '(a)

So we get

< sin™'(b) —sin"!(a) <

N N

as required.
[12]



