Solutions to M A3615 Groups and Symmetry: January 2009 Exam

1. (a) (4 marks) A group is a set G together with an operation * which assigns to
each pair (g1, ¢g2) of elements in G an element g; * go in G satisfying the following
conditions:

(G1) There exists an element e € G such that ex g =g*e =g for all g € G.
(G2) For all g € G there exists ¢! € G such that gx g ' =g txg=c.
(G3) For all g1, g2, g3 € G we have (g1 * ga) * g3 = g1 * (g2 * g3)-

(b) (2 marks) 2 x 3 =0 modulo 6 and 0 ¢ A.
(c¢) (4 marks) Write the multiplication into the following table:

W = NN
— N W R

3
3
1
4
2

B~ W N |

=W N

So the multiplication is closed. Now check (G1)-(G3):

(G1) identity = 1.

(G2)17'=1,271=3,3"1=24""1=4

(G3) follows from associativity for multiplication of integers.

(d) (1 marks) Let r be the rotation anticlockwise by 7 around the centre of the
cube. Then C = {e,r,r? r3}.

(e) (4 marks) Note that B = (2) = {1,2,2% = 4,23 = 3}. Now consider the bijection
¢ : C — B given by ¢(r') = 2 for i = 0,1,2,3. By definition, this map is an
isomorphism. Alternatively, write down both Cayley tables, using the order of
elements of B given above and check that these coincide.

(f) (3 marks) In Zy x Zy every element has order 2 (or 1 for the identity). But
in B and C, there are two elements of order 4. Thus these groups cannot be
isomorphic.

(g) (2 marks) Take for example 6 : B — C defined by 6(g) = e for all g € B. This
is a homomorphism but not an isomorphism as it is not bijective.

2. (a) (2 marks) The order of an element g € G is the smallest positive integer r € N
satisfying ¢" = e.

(b) (2 marks) The order of any g € G divides the order of the group G.

(c¢) (4 marks) Say that the order of g is equal to 7. Then using (b) we know that
rs = 6 for some s. So

9 =9 =g xg=g"xg=(d)xg=exg=cxg=y.
Thus if ¢” = e then we have g = e.
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(d) (12 marks) As G and S3 are isomorphic, G must have one element of or-
der 1 corresponding to e under ¢, three elements of order 2 corresponding to
(1,2),(1,3),(2,3) under ¢ and two elements of order 3 corresponding to (1,2, 3)
and (1,3,2) under ¢.

Using the fact that ¢(1,2) = u, ¢(1,3) = v and w has order 2, we deduce that
?(2,3) = w.

Now uxv = ¢(1,2) x ¢(1,3) = ¢((1,2)(1,3)) = ¢(1,3,2) = z.

This leaves us with ¢(1,2,3) = y.

Now using the composition in S3, we get the following Cayley table for G:

e u v ow Yy x
ele u v w Yy =x
ulu e xr Yy w v
viv y e T u w
wlw r Yy e v u
yly v w u x e
r|lr w u v e y

(a) (3 marks) A subset H of a group G is a subgroup of G if and only if we have
(S1) e € H.
(S2) For all hy, hy € H we have hy x hy € H.
(S3) For all h € H we have h™! € H.

(b) (7 marks)

i. Let H be a subgroup of a finite group G. Then the order of H divides the
order of G.

ii. The only divisors of 17 are 1 and 17. Thus, using Lagrange’s theorem, we
get that Z,7 can only have subgroups of order 1 and 17. This means that the
only subgroups are {0} and Z;7 itself.

iii. The only divisors of 9 are 1, 3 and 9. So, using Lagrange’s theorem, we get
that Zg can only have subgroups of order 1,3 or 9. These are {0}, {0,3,6}
and Zg.

(¢) (10 marks)

i. H=1{0,3,6} is a subgroup of Zg of order 3. As Zjq is abelian, all subgroups
are normal (as left and right cosets coincide).

ii. H=1{0,3,6}, 1+ H ={1,4,7}, 2+ H = {2,5,8}.
The Cayley table for Zo/H is given by

| H 1+H 2+H
H H 1+H 24+H
l+H|1+H 2+H H
2+H|2+H H 1+H

iii. Consider the homomorphism

¢ : Zg — Z3 : n+— n modulo3
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4. (a)

(b)

()

mapping n € Zg to its residue modulo 3.

The kernel of ¢ is given by Ker ¢ = {0,3,6} = H. The image of ¢ is given by
Im ¢ = Zs (as ¢(0) =0, ¢(1) = 1 and ¢(2) = 2). Using the first isomorphism
theorem we get that Zg/Ker ¢ = Im ¢ and so Zg/H = Zs.

(8 marks) Rotations by 7,7, 37” around an axis passing through the centre of

opposite faces. We have 3 such axes, so we get 9 rotations of this type.

Rotations by %”, 4?” around an axis passing through opposite vertices of the cube.

We have 4 such axes, so we get 8 rotations of this type.
Rotations by 7 around an axis passing through the middle of opposite edges. We
have 6 such axis, so we get 6 rotations of this type.

Adding the identity e, we get 24 rotational symmetries of the cube. So the order
of G is 24.

(12 marks) Total number of painted cubes = 3°. (3 possible colours for each
face, 6 faces). Let G act on the set of all painted cubes. Then two painted cubes
are considered to be different if they belong to different G-orbits. So the number
of different painted cubes is equal to the number of G-orbits on X (which can be

calculated using Burnside Counting theorem above).

If r is a rotation by 7 or 37” around an axis passing through the centre of opposite

faces, then Fiz(r) = 3% (and we have 6 such rotations).

If s is a rotation by 7 around an axis passing through the centre of opposite faces,
then Fix(s) = 3% (and we have 3 such rotations).
If t is a rotation by 2?” or %’r around an axis passing through opposite vertices of

the cube, then Fiz(t) = 3? (and we have 8 such rotations).
If u is a rotation by 7 around an axis passing through the middle of opposite
edges, then Fiz(u) = 3* (and we have 6 such rotations).
Thus we get that the number of different painted cubes is equal to
1

ﬂ(36+(6 x 3%) 4 (3 x 3%) 4+ (8 x 3%) + (6 x 3%)) = 57.

(2 marks) Let G be a finite group acting on a set X and let x € X. Denote by
Orbg(z) the G-orbit of  and by G, the stabilizer of x in G. Then we have

|G| = |Orbe (2)].|Ge

(4 marks) Consider the action of G on the set X of black vertices of the cube.
Then X consists of a single G-orbit. For z € X, the stabilizer of x in G consists
of the rotations around the main diagonal through that vertex z. So we get that
|G| = 3. We deduce that

IG| =4 x3=12.

(3 marks) Let G be a finite subgroup of SO3(R). Then G is isomorphic to one
of the following groups:
On (TL Z 1); D2n (n Z 2)7 A47 547 A5'
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(e)

(3 marks) As G has order 12, we must have G = Ci9, D5 or Ay. Now as G is
not abelian, it cannot be isomorphic to Cis. Moreover, as G does not contain any
rotation of order 6, it cannot be isomorphic to D1o. Hence we must have G = A,.

(8 marks) Consider the action of G on the set X of black vertices of the cube.
Numbering these vertices 1,2,3,4, this gives a homomorphism

¢ZG—>S4.

Note that if a rotation fixes all the black vertices then it must fix all the white
vertices as well and so it must fix the cube. This shows that the kernel of ¢ is
given by {e} and so ¢ is one-to-one.

Now G consists of two types of rotations: rotations by 7 around an axis passing
through the middle of opposite faces and rotations by %’T or %’r around a main
diagonal of the cube. The first type of rotation gives (under ¢) a permutation with
cycle type (a,b)(c,d) and the second gives a permutation of cycle type (a)(b, ¢, d).
In both cases we get an even permutation. So in fact we have

¢ G— Ay

Now as ¢ is one-to-one and |G| = |A4| = 12 we get that in fact ¢ is also onto and
thus it is a bijection. Hence this gives the required isomorphism from G to Ay.



