
Solutions to MA3615 Groups and Symmetry: January 2009 Exam

1. (a) (4 marks) A group is a set G together with an operation ∗ which assigns to
each pair (g1, g2) of elements in G an element g1 ∗ g2 in G satisfying the following
conditions:
(G1) There exists an element e ∈ G such that e ∗ g = g ∗ e = g for all g ∈ G.
(G2) For all g ∈ G there exists g−1 ∈ G such that g ∗ g−1 = g−1 ∗ g = e.
(G3) For all g1, g2, g3 ∈ G we have (g1 ∗ g2) ∗ g3 = g1 ∗ (g2 ∗ g3).

(b) (2 marks) 2× 3 = 0 modulo 6 and 0 /∈ A.

(c) (4 marks) Write the multiplication into the following table:

1 2 3 4
1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

So the multiplication is closed. Now check (G1)-(G3):
(G1) identity = 1.
(G2) 1−1 = 1, 2−1 = 3, 3−1 = 2, 4−1 = 4.
(G3) follows from associativity for multiplication of integers.

(d) (1 marks) Let r be the rotation anticlockwise by π
2

around the centre of the
cube. Then C = {e, r, r2, r3}.

(e) (4 marks) Note that B = 〈2〉 = {1, 2, 22 = 4, 23 = 3}. Now consider the bijection
φ : C −→ B given by φ(ri) = 2i for i = 0, 1, 2, 3. By definition, this map is an
isomorphism. Alternatively, write down both Cayley tables, using the order of
elements of B given above and check that these coincide.

(f) (3 marks) In Z2 × Z2 every element has order 2 (or 1 for the identity). But
in B and C, there are two elements of order 4. Thus these groups cannot be
isomorphic.

(g) (2 marks) Take for example θ : B → C defined by θ(g) = e for all g ∈ B. This
is a homomorphism but not an isomorphism as it is not bijective.

2. (a) (2 marks) The order of an element g ∈ G is the smallest positive integer r ∈ N
satisfying gr = e.

(b) (2 marks) The order of any g ∈ G divides the order of the group G.

(c) (4 marks) Say that the order of g is equal to r. Then using (b) we know that
rs = 6 for some s. So

g7 = g6+1 = g6 ∗ g = grs ∗ g = (gr)s ∗ g = es ∗ g = e ∗ g = g.

Thus if g7 = e then we have g = e.
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(d) (12 marks) As G and S3 are isomorphic, G must have one element of or-
der 1 corresponding to e under φ, three elements of order 2 corresponding to
(1, 2), (1, 3), (2, 3) under φ and two elements of order 3 corresponding to (1, 2, 3)
and (1, 3, 2) under φ.

Using the fact that φ(1, 2) = u, φ(1, 3) = v and w has order 2, we deduce that
φ(2, 3) = w.

Now u ∗ v = φ(1, 2) ∗ φ(1, 3) = φ((1, 2)(1, 3)) = φ(1, 3, 2) = x.

This leaves us with φ(1, 2, 3) = y.

Now using the composition in S3, we get the following Cayley table for G:

e u v w y x
e e u v w y x
u u e x y w v
v v y e x u w
w w x y e v u
y y v w u x e
x x w u v e y

3. (a) (3 marks) A subset H of a group G is a subgroup of G if and only if we have
(S1) e ∈ H.
(S2) For all h1, h2 ∈ H we have h1 ∗ h2 ∈ H.
(S3) For all h ∈ H we have h−1 ∈ H.

(b) (7 marks)

i. Let H be a subgroup of a finite group G. Then the order of H divides the
order of G.

ii. The only divisors of 17 are 1 and 17. Thus, using Lagrange’s theorem, we
get that Z17 can only have subgroups of order 1 and 17. This means that the
only subgroups are {0} and Z17 itself.

iii. The only divisors of 9 are 1, 3 and 9. So, using Lagrange’s theorem, we get
that Z9 can only have subgroups of order 1,3 or 9. These are {0}, {0, 3, 6}
and Z9.

(c) (10 marks)

i. H = {0, 3, 6} is a subgroup of Z9 of order 3. As Z9 is abelian, all subgroups
are normal (as left and right cosets coincide).

ii. H = {0, 3, 6}, 1 + H = {1, 4, 7}, 2 + H = {2, 5, 8}.
The Cayley table for Z9/H is given by

H 1 + H 2 + H
H H 1 + H 2 + H

1 + H 1 + H 2 + H H
2 + H 2 + H H 1 + H

iii. Consider the homomorphism

φ : Z9 −→ Z3 : n 7→ n modulo 3
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mapping n ∈ Z9 to its residue modulo 3.
The kernel of φ is given by Ker φ = {0, 3, 6} = H. The image of φ is given by
Im φ = Z3 (as φ(0) = 0, φ(1) = 1 and φ(2) = 2). Using the first isomorphism
theorem we get that Z9/Ker φ ∼= Im φ and so Z9/H ∼= Z3.

4. (a) (8 marks) Rotations by π
2
, π, 3π

2
around an axis passing through the centre of

opposite faces. We have 3 such axes, so we get 9 rotations of this type.

Rotations by 2π
3

, 4π
3

around an axis passing through opposite vertices of the cube.
We have 4 such axes, so we get 8 rotations of this type.

Rotations by π around an axis passing through the middle of opposite edges. We
have 6 such axis, so we get 6 rotations of this type.

Adding the identity e, we get 24 rotational symmetries of the cube. So the order
of G is 24.

(b) (12 marks) Total number of painted cubes = 36. (3 possible colours for each
face, 6 faces). Let G act on the set of all painted cubes. Then two painted cubes
are considered to be different if they belong to different G-orbits. So the number
of different painted cubes is equal to the number of G-orbits on X (which can be
calculated using Burnside Counting theorem above).

If r is a rotation by π
2

or 3π
2

around an axis passing through the centre of opposite
faces, then Fix(r) = 33 (and we have 6 such rotations).

If s is a rotation by π around an axis passing through the centre of opposite faces,
then Fix(s) = 34 (and we have 3 such rotations).

If t is a rotation by 2π
3

or 4π
3

around an axis passing through opposite vertices of
the cube, then Fix(t) = 32 (and we have 8 such rotations).

If u is a rotation by π around an axis passing through the middle of opposite
edges, then Fix(u) = 33 (and we have 6 such rotations).

Thus we get that the number of different painted cubes is equal to

1

24
(36 + (6× 33) + (3× 34) + (8× 32) + (6× 33)) = 57.

5. (a) (2 marks) Let G be a finite group acting on a set X and let x ∈ X. Denote by
OrbG(x) the G-orbit of x and by Gx the stabilizer of x in G. Then we have

|G| = |OrbG(x)|.|Gx|

(b) (4 marks) Consider the action of G on the set X of black vertices of the cube.
Then X consists of a single G-orbit. For x ∈ X, the stabilizer of x in G consists
of the rotations around the main diagonal through that vertex x. So we get that
|Gx| = 3. We deduce that

|G| = 4× 3 = 12.

(c) (3 marks) Let G be a finite subgroup of SO3(R). Then G is isomorphic to one
of the following groups:
Cn (n ≥ 1), D2n (n ≥ 2), A4, S4, A5.
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(d) (3 marks) As G has order 12, we must have G ∼= C12, D12 or A4. Now as G is
not abelian, it cannot be isomorphic to C12. Moreover, as G does not contain any
rotation of order 6, it cannot be isomorphic to D12. Hence we must have G ∼= A4.

(e) (8 marks) Consider the action of G on the set X of black vertices of the cube.
Numbering these vertices 1,2,3,4, this gives a homomorphism

φ : G −→ S4.

Note that if a rotation fixes all the black vertices then it must fix all the white
vertices as well and so it must fix the cube. This shows that the kernel of φ is
given by {e} and so φ is one-to-one.

Now G consists of two types of rotations: rotations by π around an axis passing
through the middle of opposite faces and rotations by 2π

3
or 4π

3
around a main

diagonal of the cube. The first type of rotation gives (under φ) a permutation with
cycle type (a, b)(c, d) and the second gives a permutation of cycle type (a)(b, c, d).
In both cases we get an even permutation. So in fact we have

φ : G −→ A4.

Now as φ is one-to-one and |G| = |A4| = 12 we get that in fact φ is also onto and
thus it is a bijection. Hence this gives the required isomorphism from G to A4.
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