Solutions to M A3615 Groups and Symmetry: May 2010 Exam

1. Let G = {e,z,y,2,u,v} be a group with multiplication * and identity element e.
Suppose that G is abelian. Suppose further that 22 = y?> = 2z, 22 =02 = 2, x x y = v,
r*z=e,u*xr =y and u has order 2.

(a) Using the condition given and the fact that every element occurs precisely once
in each row and column we get the following Cayley table for G.

e T Yy 2z u v
ele r y 2z u v
rlr z v e y u
yly v z u x e
zlz e u T vy
ulu Yy r v oe 2z
viv u ey z T

[6]

(b) The order of a group is the cardinality of the group. The order of an element g
in the group is the smallest positive integer r satisfying g" = e. The order of any

element divides the order of the group. [3]
(c)elt=earl=z,yt=v 2=, v =uvli=y

e has order 1, u has order 2, x and z have order 3, y and v have order 6. [2]

(d) i. G cannot be isomorphic to Sg. As |Sg| = 6! # |G| = 6, there cannot be a

bijection from Sg to G. [1]

ii. G cannot be isomorphic to S5 as G is abelian and Ss is not (take for example

(1,2)(2,3) # (2,3)(1,2)). 2]

iii. G is isomorphic to Zg. As y has order 6 it generates G and so we can define an
isomorphism ¢ : Zg — G by setting ¢(1) = y. This gives ¢(0) = e, ¢(1) =y,
$(2) =y* =z 6(3) =y’ =u, ¢(4) =y' =z and ¢(5) = y° = . [3]

iv. (1,1) is an element of order 6 in Zy X Z3, so we can define ¢ : Zs X Z3 — G
by setting ¢(1,1) = y. This gives 1(0,0) = e, ¥(1,1) = y, ¥(0,2) = z,

¥(1,0) = u, ¥(0,1) =z and ¢(1,2) = v. [3]
2. (a) A subset H of a group G is a subgroup of G if the following conditions are satisfied
(Sl) eq € H.
(S2) For all hy, hy € H we have hihy € H.
(S3) For all h € H we have h™! € H. [2]

(b) A subgroup H of G is a normal subgroup of G is gH = Hg for all g € G. (2]
(c) i H=((1,2)={e (1,2)}.

Left cosets:
H

(1,3)H ={(1,3),(1,2,3)}



(27 3>H = {(27 3)7 (17 3, 2)}
Right cosets:
H
H(1,3) ={(1,3),(1,3,2)}
H(2,3) ={(2,3),(1,2,3)}.
As left and right cosets do not coincide, the subgroup H is not normal in G.
[3]
. H=1{((1,2,3)) ={e(1,2,3),(1,3,2)}.
Left /right cosets:

H
(1L2)H = H(1,2) = {(1,2), (1,3), (2,3)}.
As left and right cosets coincide, H is normal in G. [2]

ili. H = (10,15) = 5Z. As 10n + 15m € 5Z we have H C 5Z but also 5 =
15—10€ H,so 5Z C H.
Left /right cosets:
H={ .. -10,-5,0,510,...}
1+H={..-9,-4,1,6,11,.
24+ H={.—-8,-3,2712,.
3+H={...—7,-2,3,8,13,.
44+ H={...—6,-1,4,9,14,.
As left and right cosets coincide (Z is abelian) the subgroup H is normal in

A [3]

(d) First consider G = S3 and H = {e, (1,2,3),(1,3,2)} then the Cayley table for
G/H is given by

)
)
)
)

2)H
2)H
H

| H (1,
H H (1,
(1,2)H | (1,2)H

We can see from the table (or otherwise) that G/H = Sy (= Zy = C)). [3]
Next consider G = 7Z and H = 5Z. Then the Cayley table for G/H is given by

H 1+H 2+H 3+H 4+ H
H H 1+H 24+H 3+H 4+ H
1+H|1+H 2+H 3+H 4+H H
2+ H|2+H 3+H 4+H H 1+4+H
3+H |3+H 44+4H H 14+H 2+ H
4+H|44+4H H 1+H 2+H 3+H

We see from the Cayley table that G/H = Zs. [5]



3. (a) Let G be a finite group acting on a finite set X. For g € G, define Fix(g) to be
Fix(g) = {z € X | g(z) = x}.
2]

(b) Let G be a finite group acting on a finite set X then the number of G-orbits on

X is given by
1 .
@ Z FlX(g)

geG

2]

(c) i Let G = Dg = {e,r,7%,r3 s,rs,r%s,73s} be the group of all symmetries of

a square. Let X be the set of all punched cards. Then |X| = ( g ) = 36

(choose to punch 2 out of the 9 small squares). Then G acts on X and two

cards will be the same precisely if they are in the same G-orbit. So we need

to count the number of G-orbits on X. This is given by Burnside Counting

theorem. [4]

We have to find Fix(g) for each g € G.

Fix(e) = 36 as e fixes everything.

Fix(r) = Fix(r®) = 0 as r and 73 don’t fix anything.

Fix(r?) = 4 as r? fixes the following 4 cards.

So applying Burnside theorem we get that the number of different ID cards
is given by

1 1
g(B6+0+0+4+6+6+06+6) = (64) =8,



(8]

ii. The 8 different ID cards are pictured below.

[4]

(a) Let G be a finite group acting on a finite set X and let 2 € X. Denote by Orbg(x)
the G-orbit of x and by G, the stabilizer of x in G. Then we have

|G| = [Orbe(z)[.|Gel-

2]

(b) Let G be the group of all rotational symmetries of a cube. Let X be the set of
faces of the cube and let © € X be any face. Then |Orbg(x)| = 6 and |G,| = 4

(4 rotations around an axis passing through the centre of x). So applying the

Orbit-Stabilizer theorem we get that |G| =4 x 6 = 24. [2]
(c) G'1is a subgroup of G. [2]
i. No, as |G| = 24 and using Lagrange’s theorem, |G’| must divide 24. [2]

ii. Yes. We can for example paint the cube as a die (numbering the faces with
the numbers 1,...6). [2]

(d) i. Let = be any face of the painted cube. As G’ acts transitively on the set
of faces, we have that |Orbg/(z)| = 6. Now |G| = 2 as G, consists of the
identity and a rotation by w. Thus using the Orbit-Stabilizer theorem we

have |G'| =2 x 6 = 12. [2]
ii. Let G be any finite subgroup of SO3(R) then G is isomorphic to precisely
one of the following: C,, (n > 1), Dy, (n > 2), Ay, S4, As. [2]

iii. As |G’| = 12 we have that G’ = C15, D15 or Ay. Now as G’ is not abelian we
know that G’ cannot be isomorphic to C1o. Morover as G’ doesn’t contain a
rotation of order 6 we know that G’ cannot be isomorphic to Dy5. Hence, the
group G’ must be isomorphic to Ay. [6]



