
MA3615 Groups and Symmetry: Solutions to Coursework 1

1. (a) A is not a group as

(
0 0
0 0

)
has no inverse.

(b) B is a group. 3n+ 3m = 3(n+m) ∈ 3Z. Moreover we have
(G1) identity 0 = 3.0 ∈ 3Z.
(G2) inverse (3n)−1 = −3n = 3(−n) ∈ 3Z.
(G3) 3n+ (3m+ 3l) = (3n+ 3m) + 3l.

(c) C is a group. In fact C is isomorphic to the group C4 of all rotational symmetries
of the square (to see this label the vertices of the square clockwise by 1,2,3 and
4).
Can check that C is a group directly: First check that C is closed under multi-
plication:
e2 = e ∈ C, (1, 2, 3, 4)2 = (1, 3)(2, 4) ∈ C, ((1, 3)(2, 4))2 = e ∈ C, (1, 4, 3, 2)2 =
(1, 3)(2, 4) ∈ C.
(1, 2, 3, 4) ◦ (1, 3)(2, 4) = (1, 3)(2, 4) ◦ (1, 2, 3, 4) = (1, 4, 3, 2) ∈ C.
(1, 2, 3, 4) ◦ (1, 4, 3, 2) = (1, 4, 3, 2) ◦ (1, 2, 3, 4) = e ∈ C.
(1, 3)(2, 4) ◦ (1, 4, 3, 2) = (1, 4, 3, 2) ◦ (1, 3)(2, 4) = (1, 2, 3, 4) ∈ C. Moreover we
have
(G1) identity e.
(G2) e−1 = e, (1, 2, 3, 4)−1 = (1, 4, 3, 2), ((1, 3)(2, 4))−1 = (1, 3)(2, 4).
(G3) follows from associativity of composition of maps.

B and C are both abelian.

2. (a) Let r be the rotation by π
2

around the axis passing through the top vertex and
the centre of the square base of the pyramid. Then G = {e, r, r2, r3}.

(b) The map φ : G→ H given by φ(e) = 1, φ(r) = 2, φ(r2) = 4 and φ(r3) = 3 is an
isomorphism. (Note that this map is completely determined once we set φ(r) = 2.
We could also have chosen φ(r) = 3 as 3 is also an element of order 4.)

(c) Label the vertices of the square base of the pyramid by 1,2,3 and 4. This defines an
isomorphism θ : G → C given by θ(e) = e, θ(r) = (1, 2, 3, 4), θ(r2) = (1, 3)(2, 4)
and θ(r3) = (1, 4, 3, 2).

(d) No as in Z2 × Z2 every element (other than (0, 0)) as order 2, but in G we have
two elements of order 4, namely r and r3.

3. (a) As |G| = 6 we have that g6 = e.
Now g13 = g6 ∗ g6 ∗ g = e ∗ e ∗ g = g. So if g13 = e then we must have g = e.

(b) As |G| = 17 is prime, using Lagrange’s theorem we know that subgroups of G can
only have order 1 or 17. So the only subgroups of G are {e} and G itself.

4. (G, †) cannot be a group as the last row of the Cayley table contains the entry a twice.
This contradicts Corollary 1.5 from the lecture which says that in the Cayley table of
a finite group every element appears precisely once in each row and column.
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(G, ∗) is a group as we have an isomorphism with Z2 × Z2 given by (for example)
φ : G→ Z2 × Z2 with φ(a) = (1, 0), φ(b) = (0, 0), φ(c) = (0, 1) and φ(d) = (1, 1).
Note that the Cayley table for (G, ∗) forces b to be the identity, and so we must have
φ(b) = (0, 0), but in fact a, c, d could be mapped to anything, it would always give an
isomorphism.

(G,×) is also a group as we have an isomorphism ψ : G→ Z4 with ψ(a) = 1, ψ(b) = 2,
ψ(c) = 0 and ψ(d) = 3.
Here again, the Cayley table for (G,×) forces c to be the identity. Now we also see
from the Cayley table that G has two elements of order 4, namely a and d, and one
element of order 2, namely b. So a could be mapped to 1 or 3 in Z4. If we say that
ψ(a) = 1 then as ψ is an isomorphism, everything else is automatically determined as
ψ(b) = ψ(a2) = ψ(a)2 = 1 + 1 = 2, ψ(d) = ψ(a3) = ψ(a)3 = 1 + 1 + 1 = 3.

5. Note that the assumptions given and the fact that φ is an isomorphism determine φ
completely:
g2 = i implies that φ(1, 2)2 = φ((1, 2)2) = φ(e) = i.
g ∗ h = j implies that φ(1, 2) ∗ φ(2, 3) = φ((1, 2)(2, 3)) = φ(1, 2, 3) = j.
As k has order 3, it must be the image of an element of order 3, but there is only one
such element left, namely (1, 3, 2). Thus we must have φ(1, 3, 2) = k.
This leaves φ(1, 3) = l. Now using the multiplication in S3 and the isomorphism φ we
get that the Cayley table for (K, ∗) is given by

i g h l k j
i i g h l k j
g g i j k l h
h h k i j g l
l l j k i h g
k k h l g j i
j j l g h i k

6. Subgroup of order 1: {0}.
Subgroup of order 2: {0, 6}.
Subgroup of order 3: {0, 4, 8}.
Subgroup of order 4: {0, 3, 6, 9}.
Subgroup of order 6: {0, 2, 4, 6, 8, 10}.
Subgroup of order 12: Z12.

7. (a) H = 〈r3〉 = {e, r, r2, r3}
sH = Hs = {s, rs, r2s, r3s}.

(b) H = 〈r2s〉 = {e, r2s}
The left cosets are H, rH = {r, r3s}, r2H = {r2, s} and r3H = {r3, rs}.
The right cosets are H, Hr = {r, rs}, Hr2 = {r2, s} and Hr3 = {r3, r3s}.

(c) H = 〈r2, s〉 = {e, r2, s, r2s}
rH = Hr = {r, r3, rs, r3s}.

(d) H = 〈r3, s〉 = D8 (only one coset).
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