
1

Arrays/Array functions
 Arrays are VBA variables which can store more than one item.

· by default the indexing starts at 0

syntax: declaration: Dim Name(number)

usage: Name(x) where 0 x number

- Expl.: an array with three items named A

usage: A(0) = 5

A(1) = 3

A(2) = 6

note: A(3) is not defined

· the items held in an array are all of the same variable type

· one refers to an item by the array name and a number

declaration: Dim A(2)

2

• You may change the index set from its default value

usage: A(8) = 5

A(9) = 3

A(10) = 6

note: A(6), A(7), A(11), A(12), ... are not defined

declaration: Dim A(8 to 10)

syntax: declaration: Dim Name(x to y)

usage: Name(z) where x z y

- Expl.: an array with three items named A

• Alternatively you can also use the array function

syntax: declaration: Dim Name as variant

usage: Name = array(x,y, ...,z)

· the indexing starts at zero, i.e. Name(0) = x

3

• Example 1:

Sub Example1()

Dim A(8 To 10)

A(8) = 2

A(9) = 3

A(10) = A(8) + A(9)

Range("A10").Value = A(10)

End Sub

- writes 5 into the cell A10 of the active worksheet

• Example 2:
Sub Example2()

Dim B As Variant

B = Array(2, 3, 4, 5)

Range("A13").Value = (B(0) + B(1)) /B(3)

End Sub

- writes 1 into the cell A13 of the active worksheet

4

syntax: declaration: Dim Name(num1,num2,num3,...)

usage: Name(x,y,z,...) 0 x num1

0 y num2

0 z num3

.......................

 Multidimensional arrays are VBA variables which can hold

more than one item related to several index sets (up to 60)

· e.g. a two dimensional array is a matrix

· the change of the index set is analogue to the one dimensional

case

usage: A(1,1) = a A(1,2) = b

A(2,1) = c A(2,2) = d

declaration: Dim A(1 to 2,1 to 2)

- Expl.: a 2 by 2 matrix

5

· the first statement creates a one dimensional resizable array

 Resizable arrays are arrays whose size is not fixed

syntax: declaration: Redim Name(x to y)

........

Redim Name(w to z)

· the second statement overwrites the first statement

· now the values in the array Name(x to y) will be saved

syntax: declaration: Redim Name(x to y)

........

Redim preserve Name(w to z) wx , zy

 Upper and lower bound function

· Lbound(RA) gives the lower bound of the array called RA

· Ubound(RA) gives the upper bound of the array called RA

6

 Data exchange: Arrays can be used as an efficient way to ex-

change data between the Excel spreadsheet and the VBA program

• VBA program spreadsheet

Range("A1:B2").Value = A

(puts the values of the array A into cells A1:B2)

• spreadsheet VBA program

Dim B As Variant

B = Range("A1:B2").Value

(assigns the values of cells A1:B2 to the array B)

- Expl.: Redim RA(1 to 10)

x = Lbound(RA)

y = Ubound(RA)

Redim RA(12 to 19)

x = Lbound(RA)

y = Ubound(RA)

(x = 1)

(y = 10)

(now x = 12)

(now y = 19)

- Expl.: The content of two 2 by 2 matrices in the cells A1:B2 and D1:E2 are

read to two arrays A and B. The matrices are multiplied and the result

is returned to the cells G1:H2.
Sub Matrix()

Dim A, B As Variant

Dim C(1 To 2, 1 To 2)

End Sub 7

arrays have to be variants

the indexing starts at 1For i = 1 To 2

For j = 1 To 2

C(i, j) = A(i, 1) * B(1, j) + A(i, 2) * B(2, j)

Next j

Next i

A = Range("A1:B2").Value

B = Range("D1:E2").Value

Range("G1:H2").Value = C

8

 MMULT is an Excel array function which returns the product

of two arrays

syntax: MMULT(array name1 , array name2)

- Expl.: MMULT(“A1:B2“ , “D1:E2“)

returns the same product as the previous VBA program

- notice that MMULT is an array function, such that you have

to prepare for an output bigger than one cell: (recall LINEST)

· select a range for the output, e.g. 22 cells

· type the function, e.g. = MMULT(.....)

· complete with + + Ctrl Shift Enter

- notice also: MMULT is an Excel function not VBA function

9

 The Split Function returns an array consisting of substrings from

a string expression in which each substring is separated by a

delimiter which can be specified

syntax: Split(expression [, delimiter] [, limit])

expression a string expression

limit the maximum number of substrings to be returned

(the default value is –1, that is all substrings)

delimiter the character which separates the substrings

(the default value is space)

- Expl.: Dim x as variant

x = Split(“Today is Tuesday“)

x(1) = “Today“ x(2) = “is“ x(3) = “Tuesday“

or: x = Split(“a,b,c,d,e,f,g“ , “,“ , 3)

x(1) = “a“ x(2) = “b“ x(3) = “c,d,e,f,g“

10

 The Join Function returns a string consisting of the values in a

string array separated by a specified delimiter

syntax: Join(sourcearray [, delimiter])

sourcearray an array containing strings

delimiter the character which separates the substrings

(the default value is space)

- Expl.: Dim x(1 to 3)

y = Join(x)

x(1) = “Today“

x(2) = “is“

x(3) = “Tuesday“

y = “Today is Tuesday“

11

- similarly:

y = “Today “ & “is “ & “Tuesday“

y = “Today is Tuesday“

· in addition:

y = “Today “ & “is “ & “Tuesday the “ & x & “-th of March“

· here the individual components do not have to be of string type

(8 is an integer)

y = “Today is Tuesday the 8-th of March“

Dim x as integer

x = 8

