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WHAT THIS WORK IS ABOUT

• Quantity we want to compute⇒ the entanglement entropy of quantum systems.

More precisely we want to consider integrable QFTs and to compute the leading

correction to the large-distance behaviour of the entropy

• Methods we want to employ⇒ the replica trick together with particular techniques

which are available for integrable QFTs (e.g. form factor program)

• Main conclusion reached⇒ the leading correction to the entropy at large-distances is

largely model-independent. More precisely, it depends only on the mass spectrum of

the theory (for integrable QFT with diagonal S-matrix).



I. WHAT IS ENTANGLEMENT ENTROPY?

A measure of the quantity of entanglement between different parts of a quantum system.

Entanglement: Characteristic of quantum systems whereby performing a local measure-

ment may instantaneously effect local measurements far away.

• Reduced density matrix (in the ground state): ρA = TrĀ(|gs〉〈gs|)

A
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• (Bi-partite) Entanglement entropy: SA = −TrA(ρA log(ρA))

It is the “number of links between A and Ā in the ground state”⇒ SA = SĀ.
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II. PARTITION FUNCTIONS ON MULTI-SHEETED RIEMANN SURFACES: SCALING LIMIT

• Scaling limit: correlation length ξ →∞, L/ξ = mr fixed

QFT, mass m, lagrangian density L[φ]

• “Replica trick:” SA = − lim
n→1

d

dn
TrA(ρn

A)

• Partition function on Riemann surfaces for n ∈ N in the scaling limit:

A〈φ|ρA|ψ〉A ∼
r

ψ>
φ|< A

|

TrA(ρn
A) ∼ Zn =

∫
[dφ]Mn exp

[
−

∫

Mn

d2x L[φ](x)
]

M3 :



Problem: Branch points correspond to non-local fields in the QFT L

(x)
/
L[φ]

=

Zn 6∝ 〈T (0)T̃ (r)〉L



Solution: Branch-point twist fields

These are local twist fields associated to cyclic permutation symmetry of the n-copy model.

• Multi-copy model on R2:

L(n)[φ1, . . . , φn](x) = L[φ1](x) + . . . + L[φn](x)

• Symmetry L(n)[σφ1, . . . , σφn] = L(n)[φ1, . . . , φn], with σφi = φi+1 mod n

• Associated twist fields T :

〈T (a) · · ·〉L(n) ∝
∫

Ca

[dφ1 · · · dφn]R2 exp
[
−

∫

R2
L(n)[φ1, . . . , φn](x)

]

Ca:

(a)

i

i+1φ T

(x)

(x)

φ



The main advantage is that branch points are now local fields in the QFT L(n)

Introducing a twist field T̃ associated to the inverse symmetry σ−1 ⇒ we obtain the partition

function:

〈T (0)T̃ (r)〉L(n) ∝
∫

C0,r

[dφ1 · · · dφn]R2 exp
[
−

∫

R2
L(n)[φ1, . . . , φn](x)

]
= Zn

C0,r :

~

i

i+1φ T

(x)

(x) (0) T(r)

φ

φi(y)T (x) = T (x)φi+1(y) x1 > y1

φi(y)T̃ (x) = T̃ (x)φi−1(y) x1 > y1



III. SHORT- AND LARGE-DISTANCE ENTANGLEMENT ENTROPY

Zn = ε2dn〈T (0)T̃ (r)〉L(n) , SA = − lim
n→1

d

dn
Zn

where ε is a non-universal short-distance cutoff and dn is the scaling dimension of T :

dn =
c

12

(
n− 1

n

)

[Calabrese and Cardy, 2004]

• Short-distance: logarithmic behavior

〈T (0)T̃ (r)〉L(n) ∼ r−2dn ⇒ SA ∼ − c

3
log

(ε

r

)

• Large-distance: saturation

〈T (0)T̃ (r)〉L(n) ∼ 〈T 〉2L(n) ⇒ SA ∼ − c

3
log(mε)− U

U =
d

dn

(
m−2dn〈T 〉2L(n)

)∣∣∣∣
n=1



Our result: for any integrable QFT with diagonal scattering, the entropy with its first

correction to saturation at large distances is:

SA ∼ − c
3 log(mε)− U − 1

8

∑̀
α=1

K0(2rmα) + O
(
e−3rm1

)

where ` is the number of particles in the spectrum of the QFT, and mα are the masses of the

particles, with m1 ≤ mα ∀α.



IV. FORM FACTORS OF BRANCH-POINT TWIST FIELDS

For an integrable QFT L with a spectrum of one particle, no bound state, and S-matrix S(θ)

• Scattering matrix of L(n):

Sii(θ) = S(θ) ∀ i = 1, . . . , n,

Sij(θ) = 1, ∀ i, j = 1, . . . , n and i 6= j,

• Form factors of branch-point twist field in L(n):

F i1...ik

k (θ1, . . . , θk) := 〈gs|T (0)|θ1, . . . , θk〉in
i1,...,ik

F
...µiµi+1...

k (. . . , θi, θi+1, . . .) = Sµiµi+1(θi − θi+1)F
...µi+1µi...

k (. . . , θi+1, θi, . . .)

F
µ1µ2...µk
k (θ1 + 2πi, . . . , θk) = F

µ2...µk µ1+1
k (θ2, . . . , θk, θ1)

−iResθ̄0=θ0
F

µµµ1...µk
k+2 (θ̄0 + iπ, θ0, θ1 . . . , θk) = F

µ1...µk
k (θ1, . . . , θk)

−iResθ̄0=θ0
F

µ µ+1 µ1...µk
k+2 (θ̄0 + iπ, θ0, θ1 . . . , θk) = −

kY
i=1

Sµµi(θ0i)F
µ1...µk
k (θ1, . . . , θk)



The quasi-periodicity relation

Fµ1µ2...µk

k (θ1 + 2πi, . . . , θk) = Fµ2...µkµ1+1
k (θ2, . . . , θk, θ1)

+1θ1θ 2θ µ2µ1 θkµk

+2πi

µ1

T(0)

...

1



The kinematic residue equations

−iResθ̄0=θ0
Fµµµ1...µk

k+2 (θ̄0 + iπ, θ0, θ1 . . . , θk) = Fµ1...µk

k (θ1, . . . , θk)

iResθ̄0=θ0
Fµ µ+1 µ1...µk

k+2 (θ̄0 + iπ, θ0, θ1 . . . , θk) =
k∏

i=1

Sµµi(θ0i)F
µ1...µk

k (θ1, . . . , θk)

...

kµk0θ0θ µ

πi+

T(0)

...

µ 0θ µ

T(0)

θkµkµ+10θ

πi+

θ



The structure of the two-particle form factors

• Basic properties: F ij
2 (θ1, θ2) = F 1 1+j−i

2 (θ1 − θ2)

• Only F 11
2 (θ) matters: F 1j

2 (θ) = F 11
2 (2πi(j − 1)− θ) , j = 2, . . . , n

• Non-trivial constraints: F 11
2 (θ) = S(θ)F 11

2 (−θ) = F 11
2 (2πin− θ)

2
11

F2
12

F2
13

πi n2

πi2 πi

θ

−

π

n

i F



The exact two-particle form factors

With the integral representation for the scattering matrix:

S(θ) = exp
[∫ ∞

0

dt

t
g(t) sinh

(
tθ

iπ

)]

the solution is

F 11
2 (θ) =

〈T 〉 sin (
π
n

)

2n sinh
(

iπ−θ
2n

)
sinh

(
iπ+θ
2n

) F 11
min(θ)

F 11
min(iπ)

where

F 11
min(θ) = exp

[∫ ∞

0

dt

t sinh(nt)
g(t) sin

(
it

2

(
n +

iθ

π

))2
]



Ising and sinh-Gordon cases

• Ising case:

S(θ) = −1 , F 11
min(θ) = −i sinh

θ

2n

• sinh-Gordon case:

S(θ) =
tanh 1

2

(
1− iπB

2

)

tanh 1
2

(
1 + iπB

2

) , g(t) =
8 sinh tB

4 sinh t
2

(
1− B

2

)
sinh t

2

sinh t

Checks performed:

• Evaluating the scaling dimension using Delfino-Simonetti-Cardy formula [DSC’96] and

Fring-Mussardo-Simonetti [FMS’93] form factors of the stress-energy tensor in sinh-

Gordon: exact formula in the Ising case, good numerical accuracy for sinh-Gordon

• Evaluating the form factors directly in the angular quantisation using

Brazhnikov-Lukyanov’s [BL’98] angular quantisation for integrable models



V. TWO-POINT CORRELATION FUNCTION OF TWIST FIELDS

〈T (0)T̃ (r)〉 = 〈gs|T (0)T̃ (r)|gs〉
=

∑

state k

〈gs|T (0)|k〉〈k|T̃ (r)|gs〉

= 〈T 〉2 + n
n∑

j=1

∫
dθ1dθ2e

−mr(cosh θ1+cosh θ2)|F 1j
2 (θ1 − θ2)|2 + . . .

= 〈T 〉2
(

1 +
n

4π2

∫ ∞

−∞
f(θ, n)K0(2mr cosh(θ/2)dθ + . . .

)

where

f(θ, n) = 〈T 〉−2
n−1∑

j=0

|F 11
2 (−θ + 2πij)|2



In order to compute the entropy we would like to evaluate lim
n→1

d

dn
(nf(θ, n))⇒

analytic continuation f̃(θ, n) of f(θ, n) from n = 1, 2, 3, . . . to n ∈ [1,∞)

The analytic continuation f̃(θ, n) of f(θ, n) does not converge uniformly as n → 1 on

θ ∈ R, that is, f̃(0, 1) 6= f(0, 1) = 0



The non-zero value of f̃(0, 1) is due to the collision of poles of |F 11
2 (2πij)|2 as function of

j as n → 1, as can be seen from Poisson’s re-summation formula

F2
11

πi n2

πi2 πi

θ

−n

πi F2
11

πi n2

θ

n

π

1

i

Poisson re-summation formula:

f(θ, n)− s(θ, 0) =
n−1∑

j=1

s(θ, j) =
∑

k∈Z
(snk − sk)

s(θ, j) = |F 11
2 (−θ + 2πij)|2 , sk =

∫ n

0

dj e−
2πijk

n s(θ, j)



Extracting the poles:

s(θ, j) ∼ iF 11
2 (−2θ + 2πin− iπ)

−θ − 2πij + 2πin− iπ
− iF 11

2 (−2θ + iπ)
−θ − 2πij + iπ

+ c.c.

and re-summing them exactly gives

f̃(θ, n) ∼ f̃(0, 1)
(

iπ(n− 1)
2(θ + iπ(n− 1))

− iπ(n− 1)
2(θ − iπ(n− 1))

)
, f̃(0, 1) =

1
2

Hence the derivative is supported at θ = 0:

(
∂

∂n
f̃(θ, n)

)

n=1

= π2f̃(0, 1)δ(θ)



There is an exact analytic continuation:

Consider the closed-contour integral
∫

C

dj

2πi
π cot πj F 11

2 (2πij)2

i F2
11

πi n2

πi2 πi

θ

−n

π

C

Assuming F 11
2 (0) = 0 and F 11

2 (θ) = 0 at |θ| → ∞:

f̃(0, n) =
1
2
− 1

2π

∫ ∞

−∞
Im(S(−θ)) coth

(
θ

2

)
|F 11

2 (θ)|2dθ



VI. MULTI-PARTICLE AND BOUND-STATE CASE (DIAGONAL SCATTERING)

| . . . , θµi , θµi+1 , . . .〉 = Sµiµi+1 | . . . , θµi+1 , θµi , . . .〉 , µ = (type, sheet)

• For every particle type, there is a kinematic residue⇒ contribution at n = 1

• Possible bound states give additional poles on the physical sheet, on the imaginary line

of θ, but they never collide⇒ no contribution at n = 1.

F2
11

πi n2

πi2 πi

θ

−n

πi F2
11

πi n2

θ

n

π

1

i



VII. EVALUATING THE SATURATION CONSTANT IN THE ISING MODEL

We evaluated the constant U for the Ising model, exploiting previous results for Ising

one-point functions by Lukyanov and Zamolodchikov [LZ’97] and by relating the expectation

value of the twist fields to that of free Fermions in the n-copy model.

We obtained UIsing = −0.131984...

We have compared our results to numerical results in the Ising lattice by Latorre, Rico and

Vidal [LRV’04]. We found very good agreement.



VIII. CONCLUSIONS

• The main result of this work is the derivation of the first correction to saturation of the

entanglement entropy in any IQFT with diagonal scattering. The result is remarkably

general. As a by-product of our investigation we obtained the saturation value of the

entropy in the Ising model and derived the form factor equations associated to twist fields.

• There are several interesting open problems:

– Generalisations to non-diagonal scattering should not be too difficult.

– The evaluation of the higher-particle corrections to the entanglement entropy (implying

the further development of the form factor program for twist fields) should be possible.

– It would also be nice to compute the saturation value U for the sinh-Gordon model or

other interacting theories.


