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I. FORM FACTORS AND CORRELATION FUNCTIONS
OF QUANTUM SPIN CHAINS

• In the context of quantum spin chains, there are today two dif-
ferent approaches which allow to compute form factors and cor-
relation functions of quantum spin chains (the examples treated
are mostly the spin 1/2 XXX and XXZ spin chains):

〈O〉 =
trH(Oe

−H/kT )

trH(e−H/kT )
⇒

T→0

〈Ψg|O|Ψg〉

〈Ψg|Ψg〉

• In the first approach form factors and correlation functions are
described in terms of q-deformed vertex operators and can be
obtained as solutions to q-deformed KZ equations

M. Jimbo, T. Miwa et al. (1992-1996) [integral representations
for the n-point correlations for the XXZ spin chain].
H.E. Boos, V.E. Korepin (2001); H.E. Boos, V.E. Korepin, Y. Ni-
shiyama and M. Shiroishi (2002); H.E. Boos, V.E. Korepin and
F.A. Smirnov (2003); K. Sakai, M. Shiroishi, Y. Nishiyama and
M. Takahashi (2003); G. Kato, M. Shiroishi, M. Takahashi and
K. Sakai (2003,2004); M. Takahashi, G. Kato and M. Shiroishi
(2004); H. Boos, M. Jimbo, T. Miwa, F. Smirnov and Y. Takeyama
(2004,2005) [formulae in terms of ζ-functions for correlation
functions of the XXX and XXZ chains (initially for 2th, 3th and
4th-neighbour correlations)].
⇒I will not use this approach here!



• The other approach combines the algebraic Bethe ansatz
technique (which provides a construction scheme for the quan-
tum states) and the solution of the inverse scattering problem
(which allows to write local operators on the chain in terms of
the same objects the quantum states are made of).
• Once quantum states and operators are written in terms of
the same operators {A,B,C,D}, correlation functions and
form factors can be computed explicitly by exploiting the com-
mutation relations amongst these objects.

N. Kitanine, J.-M. Maillet and V. Terras (1999); J.-M. Maillet and
V. Terras (2000) [solution of the inverse scattering problem].
N. Kitanine, J.-M. Maillet, N.A. Slavnov and V. Terras (1999-
2005) [integral representations for correlation functions and form
factors of the spin 1/2 XXZ chain (dynamical correlation func-
tions, roots of unity...)]. N. Kitanine (2001) [correlation functions
for the spin s XXX chain]. J.-S-Caux and J.-M. Maillet (2005);
J.-S-Caux, R. Hagemans and J.-M. Maillet (2005) [numerical
applications]. F. Göhmann, A. Klümper and A. Seel (2004);
M. Bortz, F. Göhmann (2005); F. Göhmann and A. Seel (2005)
[integral representations for correlation functions at finite T]
• Here we will be using this technique for the first time for mixed
spin chains (different spin representations at different sites),
e.g. impurity systems and alternating spin chains.
• The main result of this work are closed determinant expres-
sions for the form factors of {Sz, S±} in arbitrary spin repre-
sentations and for arbitrary spins at other sites of the chain.



II. ALGEBRAIC BETHE ANSATZ

• The algebraic Bethe ansatz technique provides a closed alge-
braic setup which allows the simultaneous construction of the
conserved charges, e.g. Hamiltonian, and of its eigenstates.

L.D Faddeev, E.K. Sklyanin and L.A. Takhtajan (1979).

R( 1

2
, 1
2
)(λ)

︸ ︷︷ ︸

C2⊗C2

=





ϕ(λ+ η
2
(σz+1))

ϕ(λ+η)
ϕ(η)

ϕ(λ+η)σ
−

ϕ(η)
ϕ(λ+η)σ

+ ϕ(λ+ η
2
(1−σz))

ϕ(λ+η)





ϕ(λ) =

{
λ for the XXX chain
sinh(λ) for the XXZ chain; [∆ = cosh η]

• The R-matrix is a solution of the Yang-Baxter equations (in-
tegrability). The quantum monodromy matrix is then

T
( 1

2
)

0;1...N (λ; {ξ}) = R
( 1

2
,sN )

0N (λ− ξN ) · · ·R
( 1

2
,s1)

01 (λ− ξ1)
︸ ︷︷ ︸

we want to look at mixed chains!

=

(
A(λ) B(λ)
C(λ) D(λ)

)

; t(1/2)(λ, {ξ}) = (A+D)(λ)

• ξ1 . . . ξN are the inhomogeneity parameters. Their pres-
ence simplifies certain computations. Ultimately ξi = η/2 ∀ i.



• The transfer matrix t(1/2)(λ, {ξ}) generates the Hamilto-
nian of the model

H ∼

d log(t(1/2)(λ, {ξ}))

dλ

∣
∣
∣
∣
λ=η/2=ξ

1
...ξN

• Since [H, t(λ)] = 0, the eigenstates ofH are those of t(λ)
and have the form

|Ψ({λ})〉 = B(λ1) · · ·B(λ`)|0〉 with

∏̀

k=1

ϕ(λk − λj + η)

ϕ(λk − λj − η)
= −d(λj) BA-equations

•Here |0〉 denotes the completely ferromagnetic reference state
(all spins up) and d(λ) is the eigenvalue ofD(λ) on that state

D(λ)|0〉 = d(λ)|0〉 =

N∏

j=1

ϕ(λ− ξj − (sj − 1/2)η)

ϕ(λ− ξj + (sj + 1/2)η)
︸ ︷︷ ︸

Eigenvalue of exp(−iptot(λ))

|0〉

• The knowledge of the ground state is the first step for the
computation of correlation functions and form factors.



III.THE INVERSE SCATTERING PROBLEM

• The next step in our problem is that of finding a realization of
states and fields in terms of the same objects: {A,B,C,D}.

J.M. Maillet, V. Terras and N. Kitanine (1999);J.M. Maillet and
V. Terras (2000).

• The previous works were the starting point of a program lead-
ing to the exact computation of many correlation functions and
form factors of the XXX and XXZ chains, mostly for spin 1/2.
• The solution of the inverse problem for the generators of the
su(2) algebra Szj , S

±
j is

Sz,±j =

[
j−1∏

k=1

t(sk)(ξk)

]

Λ
(sj)

z,± (ξj)

[
j∏

k=1

t(sk)(ξk)
−1

]

Λ
(s)
z,±(u) := Tr0

[

Sz,±0 T
(s)
0;1...N (u)

]

; t(s)(u) := Tr0
[

T
(s)
0;1...N (u)

]

Λ
(s)
z,±(u) =

2s∑

k=1

t(s−
k
2
) (uk)Oz,±(u2k − α)t

( k−1

2
) (uk − α)

uk = u+
kη

2
;α =

2s+ 1

2
;Oz,±(u) =







(A−D)(u)

2
C(u)
B(u)



IV. FUSION

• A further important ingredient is the fusion procedure for quan-
tum spin chains: a procedure for constructing higher spin ob-
jects (R-matrices, monodromy matrices ...) in terms of lower
spin quantities (Clesbsch-Gordan decomposition).

P.P. Kulish, N. Yu. Reshetikhin and E.K. Sklyanin (1981) [fusion
XXX chains]; A.N. Kirillov and N. Yu. Reshetikhin (1987) [fusion
XXZ chains]; V.G. Drinfeld (1988) [quantum group approach]

• Several kinds of iterative relations follow from fusion:

t(s)(x+) = t(
1

2
)(x+ sη)t(s−

1

2
)(x)− χ(x− + sη)t(s−1)(x−)

χ(u) = A(u+)D(u−)−B(u+)C(u−) and u± = u± η/2

• These iterative relations for the higher spin monodromy matri-
ces imply similar relations for their eigenvalues on a Bethe state
and allowed to find closed expressions for these eigenvalues

Λ(s)(u, {λ}) =
2s∑

α=0

C
(s)
α (u)

∏̀

p=1

τ(λp, α)

τ(λ, α) =
ϕ(u+ − λ+ sη)ϕ(u− − λ− sη)

ϕ(u+ − λ+ (α− s)η)ϕ(u− − λ+ (α− s)η)

C
(s)
α (u) =

2s−1∏

k=α

d(u+ + (k − s)η) and C
(s)
2s (u) = 1



V. FORM FACTORS

• We would like to compute the form factors (for spin sj )

F z,±` (j, {µ}, {λ}) = 〈ψ({µ})|Sz,±j |ψ({λ})〉

• There are two basic results we need to use: the action of
operators A,D on a Bethe state

A(x) |Ψ({λ})〉 =
∏̀

k=1

ϕ(λk − x+ η)

ϕ(λk − x)
|Ψ({λ})〉

︸ ︷︷ ︸

direct term

−
∑̀

p=1

ϕ(η)

ϕ(λp − x)

∏

k 6=p

ϕ(λk − λp + η)

ϕ(λk − λp)
B(x)

∏

k 6=p

B(λk) |0〉

︸ ︷︷ ︸

indirect term

(similarly forD(x)) and the expression of the scalar product of
a Bethe state and an arbitrary state:

V.E. Korepin and A.G. Izergin (1982-1985); N. Slavnov (1988).

〈ψ({µ})|ψ({λ})〉 =
detH({µ}, {λ})

∏

i<j
ϕ(λi − λj)ϕ(µj − µi)

Hab=
ϕ(η)

ϕ(λa − µb)




∏

i6=a

ϕ(λi − µb + η)−d(µb)
∏

i6=a

ϕ(λi − µb − η)







• Employing these formulae and the reconstruction of Sz,±j in
terms of {A,B,C,D} we have found

F z` (j, {µ}, {λ}) =
φj−1({µ})

φj−1({λ})

sj detH −
∑̀

p=1

detZ(p)(ξj)

∏

i<j

ϕ(λi − λj)ϕ(µj − µi)

φj−1({µ}) =
j−1∏

k=1

Λ(sk)(ξk, {µ}); ξ±j = ξj ± η/2

Z(p)(ξj)ab = Hab for b 6= p

Z(p)(ξj)ap =
∏̀

k=1

ϕ(µk − µp + η)ϕ(µk − ξ
−
j − sjη)

ϕ(λk − ξ
−
j − sjη)

×
ϕ(2ηsj)

ϕ(µa − ξ
−
j − sjη)ϕ(µa − ξ

−
j + sjη)

• This is a closed formula for all non-vanishing form factors of
Szj in an arbitrary spin sj representation.
• It holds for both XXX and XXZ chains, irrespectively of the
spin representations sitting at other sites of the chain (those
only enter the function φj−1).
• As a consistency check, the total magnetization of the chain
can be computed employing the formula above

µ =

N∑

j=1

F z
` (j, {λ}, {λ})

〈ψ({λ})|ψ({λ})〉
=

N∑

j=1

sj − `



F+
` (j, {λ}, {µ}) =

φj−1({λ})

φj−1({µ})

`+1∏

k=1

ϕ(µk − ξ
−
j + sjη)

∏̀

k=1

ϕ(λk − ξ
−
j + sjη)

×
det C(ξj)

∏

i<j

ϕ(λi − λj)ϕ(µj − µi)

Cab(ξj)=







Hab for b 6= `+ 1
ϕ(2ηsj)

ϕ(µa − ξ
−
j − sjη)ϕ(µa − ξ

−
j + sjη)

for b = `+ 1

F−` (j, {µ}, {λ}) =
φj({µ})φj−1({µ})

φj−1({λ})φj({λ})
F+
` (j, {µ}, {λ})

• This is a closed formula for all non-vanishing form factors of
S±j in an arbitrary spin sj representation.
• It holds for both XXX and XXZ chains, irrespectively of the
spin representations sitting at other sites of the chain (those
only enter the function φj−1).
• In order to obtain these formulae, highly non-trivial algebraic
identities involving the functions Λ(s)(u, {λ}) needed to be
proven.



VI. CONCLUSIONS

• The Algebraic Bethe ansatz technique, together with the so-
lution of the inverse scattering problem can be successfully
employed to compute form factors of spin operators for higher
spins and mixed spin chains.
• These results apply both to XXX and XXZ spin chains. In the
latter case one must mention that the spin operators consid-
ered are still the generators of su(2).
• Our results can be used for the study of specially interesting
models, such as impurity systems and alternating chains, two
kinds of systems whose thermodynamic properties have been
extensively studied in the BA framework.
• Finally, we expect these results to be useful for numerical
computations. For the spin 1/2 case it has been proven (J.-
S. Caux, R. Hagemans and J.-M. Maillet (2005)) that the nu-
merical evaluation of dynamical correlation functions, by em-
ploying the form factors obtained by this approach, leads to
very precise results which can be matched with experimental
measurements.


