
Solutions to Sheet 3: Second order linear, autonomous systems

1. In order to find the eigevalues we need to find the zeroes of the characteristic polynomial of each of the
matrices. For a matrix M this is obtained by computing the determinant

|M − λI| = 0,

where I is the identity matrix. The eigevectors are the solutions to

ME = λE,

where λ is an eigenvalue of M . We now apply these definitions to each of the given matrices.

(a) For

M1 =

(
13 9
−18 −14

)
,

the characteristic polynomial is:

(13− λ)(−14− λ) + 162 = −182 + λ2 + λ+ 162 = λ2 + λ− 20 = 0,

which gives eigenvalues λ1 = 4 and λ2 = −5
The first eigenvector is the solution to(

13 9
−18 −14

)(
a
b

)
= 4

(
a
b

)
,

that is 13a + 9b = 4a and −18a − 14b = 4b. Again, the two equations are not independent, which
means that we can just fix one of the constants and then obtained the other from any of the equations.
For example, taking a = 1 we get b = −1. Thus the eigenvector is

E1 =

(
1
−1

)
.

In this case, the eigenvalues are real and different from each other and the Jordan form is simply

J =

(
−5 0
0 4

)
.

Similarly, the eigenvector associated to eigenvalue λ2 = −5 is the solution to(
13 9
−18 −14

)(
a
b

)
= −5

(
a
b

)
,

that is 13a + 9b = −5a and −18a − 14b = −5b. As usual, the two equations are not independent,
which means that we can just fix one of the constants and then obtained the other from any of the
equations. For example, taking a = 1 we get b = −2. Thus the first eigenvector is

E2 =

(
1
−2

)
.

The matrix P can be constructed in terms of the eigenvectors above as

P = (E1, E2) =

(
1 1
−1 −2

)
.

(b) Similarly for M2,

M2 =

(
5 4

−10 7

)
,

the characteristic polynomial is

(5− λ)(7− λ) + 40 = 35 + λ2 − 12λ+ 40 = λ2 − 12λ+ 75 = 0,

and the eigenvalues are λ1 = 6 + i
√
39 and λ2 = 6 − i

√
39. Since the eigenvalues are complex

conjugated to each other, it follows that the eigenvectors will also be. This can be proven in general.
If E1 is the eigenvector associated to eigenvalue λ1 we have that

M2E1 = λ1E1.
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Complex conjugating the equation we get

M2(E1)
∗ = (λ1)

∗(E1)
∗,

which means that λ2 = (λ1)
∗ is an eigenvalue with eigenvector E2 = (E1)

∗.
Therefore, we only have to find E1,(

5 4
−10 7

)(
a
b

)
= (6 + i

√
39)

(
a
b

)
.

This gives equations 5a+ 4b = (6+ i
√
39)a and −10a+ 7b = (6+ i

√
39)b, which can be rewritten as

−a+4b = i
√
39a and −10a+ b = i

√
39b. These equations seem different, but in fact are proportional

to each other. Therefore they are not independent and we can just solve them by fixing one of

the constants and then solving for the other one. Taking a = 1 we obtain b = 1+i
√
39

4 . Hence the
eigenvectors are

E1 =

(
1

1+i
√
39

4

)
, E2 =

(
1

1−i
√
39

4

)
.

The Jordan form of the matrix M2 is

J =

(
6

√
39

−
√
39 6

)
,

and the matrix P that relates J and M2 is obtained by computing the vectors

e1 = Re(E1) =

(
1
1
4

)
, e2 = Im(E1) =

(
0√
39
4

)
,

P = (e1, e2) =

(
1 0
1
4

√
39
4

)
.

(c) Finally, we do the same analysis for matrix M3,

M3 =

(
3 1
−1 1

)
.

The characteristic polynomial is:

(3− λ)(1− λ) + 1 = λ2 − 4λ+ 4 = 0,

which gives eigenvalues λ1 = λ2 = 2. We therefore have a single eigenvector to compute(
3 1
−1 1

)(
a
b

)
= 2

(
a
b

)
,

which gives 3a + b = 2a and −a + b = 2b. A solution to these equations is a = 1 and b = −1. The
eigenvector is

E1 =

(
1
−1

)
.

The Jordan form of M3 is

J =

(
2 1
0 2

)
,

and in order to obtain the matrix P we need to find one more independent vector, the Jordan vector
J1, by solving the equation

(M3 − 2I)J1 = E1.

In matrix form, (
1 1
−1 −1

)(
a
b

)
=

(
1
−1

)
,
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which gives a + b = 1 and −a − b = −1. A solution to this equation is to take a = 0 and b = 1.
Therefore

J1 =

(
0
1

)
.

The matrix P is given by

P = (E1, J1) =

(
1 0
−1 1

)
.

2. We now need to solve the system of equations

ẋ = Ax,

where A is each of the matrices of exercise 1 and x =

(
x1

x2

)
.

(a) Let us start with matrix M1. In matrix form, the equations would be(
ẋ1

ẋ2

)
=

(
13 9
−18 −14

)(
x1

x2

)
.

Because the eigenvalues of M1 are real and of different signs, the fixed point at the origin is a saddle.
The best way of solving the equations is to solve the system first in its canonical form, that is the
equations

ẏ = Jy,

where J is the Jordan form of M1 obtained before. This system of equations is nothing but,

ẏ1 = 4y1, ẏ2 = −5y2,

whose general solutions are y1 = C1e
4t and y2 = C2e

−5t, where C1 and C2 are arbitrary constants.
In vector form this means that

y = C1e
4t

(
1
0

)
+ C2e

−5t

(
0
1

)
.

It is easy to obtain the solutions x1 and x2 from this. We just have to multiply the solution above
by the matrix P . This gives

x =

(
x1

x2

)
= Py = C1e

4tP

(
1
0

)
+ C2e

−5tP

(
0
1

)
= C1e

4tE1 + C2e
−5tE2,

or, in components
x1 = C1e

4t + C2e
−5t, x2 = −C1e

4t − 2C2e
−5t.

The phase space diagrams, both in the “canonical” coordinates y1 − y2 and the original variables
x1 − x2 are given in figure 1.

(b) For M2 we have (
ẋ1

ẋ2

)
=

(
5 4

−10 7

)(
x1

x2

)
.

Because the eigenvalues of M2 are complex conjugated to each other, with positive real part, the
fixed point at the origin would be an unstable focus.
In order to find the solution to the equations we first solve the canonical system(

ẏ1
ẏ2

)
=

(
6

√
39

−
√
39 6

)(
y1
y2

)
.

We saw in the lecture that this type of system is always solved by using the change of variables
y1 = r cos θ, y2 = r sin θ. Then, the equations are solved to

r = r0e
6t, θ = −

√
39t+ θ0,
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where r0 and θ0 are arbitrary constants. So the solutions are(
y1
y2

)
= r0e

6t cos(−
√
39t+ θ0)

(
1
0

)
+ r0e

6t sin(−
√
39t+ θ0)

(
0
1

)
.

To obtain the solutions for x1, x2 we just have to multiply the vector above by the matrix P ,

x = Py = r0e
6t cos(−

√
39t+ θ0)P

(
1
0

)
+ r0e

6t sin(−
√
39t+ θ0)P

(
0
1

)
= r0e

6t cos(−
√
39t+ θ0)e1 + r0e

6t sin(−
√
39t+ θ0)e2,

and recalling the expressions for the vectors e1, e2 we get

x1 = r0e
6t cos(−

√
39t+ θ0),

x2 =
1

4
r0e

6t cos(−
√
39t+ θ0) +

√
39

4
r0e

6t sin(−
√
39t+ θ0).

The phase space diagrams, both in the y1 − y2 and x1 − x2 variables are given in figure 2.

(c) For M3 we have (
ẋ1

ẋ2

)
=

(
3 1
−1 1

)(
x1

x2

)
.

Because the eigenvalues of M3 are real, positive and equal to each other, the fixed point would be an
unstable improper node. The solution to the system ẏ = Jy in this case can be obtained by looking
at the equation in components:

ẏ1 = 2y1 + y2, ẏ2 = 2y2.

The second equation can be solved directly to y2 = C2e
2t. Substituting into the first equation and

using an integrating factor, one finds y1 = C2e
2tt+ C1e

2t. In vector form we have(
y1
y2

)
= (C1 + C2t)e

2t

(
1
0

)
+ C2e

2t

(
0
1

)
.

From this we get also

x = Py = (C1 + C2t)e
2tP

(
1
0

)
+ C2e

2tP

(
0
1

)
= (C1 + C2t)e

2tE1 + C2e
2tJ1.

In components this gives

x1 = (C1 + C2t)e
2t, x2 = −(C1 + C2t)e

2t + C2e
2t.

The phase space diagrams are given in figure 3.

3.
(a) ẋ1 = −17x1 + 39x2 + 13, ẋ2 = −6x1 + 13x2 + 26.

In matrix form this is (
ẋ1

ẋ2

)
︸ ︷︷ ︸

ẋ

=

(
−17 39
−6 13

)
︸ ︷︷ ︸

A

(
x1

x2

)
︸ ︷︷ ︸

x

+

(
13
26

)
︸ ︷︷ ︸

b

.

The fixed point of the system is the solution of Ax+ b = 0, that is

a = −A−1b = −
(

1 −3
6
13 −17

13

)(
13
26

)
=

(
65
28

)
.

One can rewrite the system of equations above in the form ż = Az by defining the new vector z = x− a.
We will now solve the equations ż = Az by rewriting this equation in the canonical form

ẏ = Jy, withz = Py,
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and J = P−1AP . We now construct the matrix P in the usual form.
The characteristic polynomial A is λ2 + 4λ + 13 and it has zeroes at λ1 = −2 + 3i and λ2 = −2 − 3i.
These are the eigenvalues of A. The eigenvectors can be computed to

E1 =

(
5−i
2
1

)
, E2 =

(
5+i
2
1

)
.

The matrix P is built out of the real and imaginary parts of the eigenvector E1 as

P = (e1, e2) =

(
5
2 − 1

2
1 0

)
.

Given the form of the eigenvalues we can already say that the fixed point of the system is an stable focus.
This also means that the solutions for y1, y2 are given by

y1 = r0e
−2t cos(−3t+ θ0), y2 = r0e

−2t sin(−3t+ θ0),

with r0, θ0 arbitrary constants. In vector form this is

y =

(
y1
y2

)
= r0e

−2t cos(−3t+ θ0)

(
1
0

)
+ r0e

−2t sin(−3t+ θ0)

(
0
1

)
.

Therefore the solution for z is,

z = Py = r0e
−2t cos(−3t+ θ0)P

(
1
0

)
+ r0e

−2t sin(−3t+ θ0)P

(
0
1

)
= r0e

−2t cos(−3t+ θ0)e1 + r0e
−2t sin(−3t+ θ0)e2,

or, in components

z1 =
5

2
r0e

−2t cos(−3t+ θ0)−
1

2
r0e

−2t sin(−3t+ θ0), z2 = r0e
−2t cos(−3t+ θ0).

Finally, the solution for x is just obtained by adding the fixed point to the solution for z, that is

x = a+ r0e
−2t cos(−3t+ θ0)e1 + r0e

−2t sin(−3t+ θ0)e2,

or, in components

x1 = 65 +
5

2
r0e

−2t cos(−3t+ θ0)−
1

2
r0e

−2t sin(−3t+ θ0), x2 = 28 + r0e
−2t cos(−3t+ θ0).

The phase space diagrams in the y1 − y2 and x1 − x2 planes are shown in figure 4.
We will now repeat the same sort of analysis for the system of equations

(b) ẋ1 = 6x2 + 6, ẋ2 = −x1 + 5x2 + 1.

In matrix form this is (
ẋ1

ẋ2

)
︸ ︷︷ ︸

ẋ

=

(
0 6
−1 5

)
︸ ︷︷ ︸

A

(
x1

x2

)
︸ ︷︷ ︸

x

+

(
6
1

)
︸ ︷︷ ︸

b

.

The fixed point of the system is the solution of Ax+ b = 0, that is

a = −A−1b = −
(

5
6 −1
1
6 0

)(
6
1

)
=

(
−4
−1

)
.

One can rewrite the system of equations above in the form ż = Az by defining the new vector z = x− a.
We will now solve the equations ż = Az by rewriting this equation in the canonical form

ẏ = Jy, withz = Py,
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Figure 1: In both diagrams the trajectories flow towards the fixed point. In both cases they do so clockwise.
This can be checked by looking at ẏ1 at y1 = 0. In that case ẏ1 = 3y2 which is positive if y2 is positive. So the
trajectories must cross the positive y2 axis in the direction of increasing y1 (that is the clockwise direction). A
similar analysis for ẋ1 shows that the trajectories move clockwise in the second diagram as well. The second
feature that characterizes fixed points of focus type is the slope of the trajectories. One can find the line
where the trajectories become vertical by solving the equation ẏ1 = 0, that is y2 = 2y1/3 or ẋ1 = 0, that is
x2 = (17x1 − 13)/39. This gives the equations of two red lines shown in the graphs. Notice that now in the
second graph the trajectories flow to the fixed point at x1 = 65, x2 = 28.

and J = P−1AP . We now construct the matrix P in the usual form.
The characteristic polynomial A is λ2 − 5λ + 6 and it has zeroes at λ1 = 3 and λ2 = 2. These are the
eigenvalues of A. The eigenvectors can be computed to

E1 =

(
2
1

)
, E2 =

(
3
1

)
.

The matrix P is built as

P = (E1, E2) =

(
2 3
1 1

)
.

Given the form of the eigenvalues we can already say that the fixed point of the system is an unstable node.
This also means that the solutions for y1, y2 are given by

y1 = C1e
3t, y2 = C2e

2t,

with C1, C2 arbitrary constants. In vector form this is

y =

(
y1
y2

)
= C1e

3t

(
1
0

)
+ C2e

2t

(
0
1

)
.

Therefore the solution for z is,

z = Py = C1e
3tP

(
1
0

)
+ C2e

2tP

(
0
1

)
= C1e

3tE1 + C2e
2tE2,

or, in components
z1 = 2C1e

3t + 3C2e
2t, z2 = C1e

3t + C2e
2t.

Finally, the solution for x is just obtained by adding the fixed point to the solution for z, that is

x1 = −4 + 2C1e
3t + 3C2e

2t, x2 = −1 + C1e
3t + C2e

2t.
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Figure 2: In both diagrams the trajectories flow away from the fixed point. In the y1 − y2 diagram, trajectories
tend to become vertical at the origin and horizontal very far away from the origin. In other words, trajectories
take the direction of the y2-axis near the origin and the direction of the y1 axis away from the origin. The role
of these two directions is replaced by the directions of the eigenvectors E1, E2 in the second diagram. The E1

direction is indicated in blue, whereas the E2 direction is indicated in red. In fact these are not exactly the
directions of the eigenvectors. They are obtained by drawing those and then shifting the origin from (0, 0) to
(-4,-1).

The phase space diagrams in the y1 − y2 and x1 − x2 planes are shown in figure 5. Finally, let us look at
the equations,

(c) ẋ1 = −4x1 + 9x2 + 2, ẋ2 = −x1 + 2x2 + 1,

In matrix form this is (
ẋ1

ẋ2

)
︸ ︷︷ ︸

ẋ

=

(
−4 9
−1 2

)
︸ ︷︷ ︸

A

(
x1

x2

)
︸ ︷︷ ︸

x

+

(
2
1

)
︸ ︷︷ ︸

b

.

The fixed point of the system is the solution of Ax+ b = 0, that is

a = −A−1b = −
(

2 −9
1 −4

)(
2
1

)
=

(
5
2

)
.

One can rewrite the system of equations above in the form ż = Az by defining the new vector z = x− a.
We will now solve the equations ż = Az by rewriting this equation in the canonical form

ẏ = Jy, withz = Py,

and J = P−1AP . We now construct the matrix P in the usual form.
The characteristic polynomial A is λ2 + 2λ+ 1 and it has zeroes at λ1 = −1 and λ2 = −1. These are the
eigenvalues of A. There is therefore only one eigenvector which can be computed to

E1 =

(
3
1

)
.

In order to find the matrix P we need to construct one further vector. We called this vector the Jordan
vector J1. It is obtained by solving the equation (A+ I)J1 = E1. A solution to this equation is

J1 =

(
2
1

)
.
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The matrix P is built as

P = (E1, J1) =

(
3 2
1 1

)
.

Given the form of the eigenvalues we can already say that the fixed point of the system is an stable improper node.
This also means that the solutions for y1, y2 are given by

y1 = (C1 + C2t)e
−t, y2 = C2e

−t,

with C1, C2 arbitrary constants. In vector form this is

y =

(
y1
y2

)
= (C1 + C2t)e

−t

(
1
0

)
+ C2e

−t

(
0
1

)
.

Therefore the solution for z is,

z = Py = (C1 + C2t)e
−tP

(
1
0

)
+ C2e

−tP

(
0
1

)
= (C1 + C2t)e

−tE1 + C2e
−tJ1,

or, in components

z1 = 3(C1 + C2t)e
−t + 2C2e

−t, z2 = (C1 + C2t)e
−t + C2e

−t.

Finally, the solution for x is just obtained by adding the fixed point to the solution for z, that is

x1 = 5 + 3(C1 + C2t)e
−t + 2C2e

−t, x2 = 2 + (C1 + C2t)e
−t + C2e

−t.

The phase space diagrams in the y1 − y2 and x1 − x2 planes are shown in figure 6.

Figure 3: In both diagrams the trajectories flow towards the fixed point. In the y1 − y2 diagram, trajectories
tend to become vertical horizontal at the origin. In other words, trajectories take the direction of the y1-axis
near the origin. The role of the y1-axis is replaced by the directions of the eigenvector E1 in the second diagram
(the dark blue line). In both diagrams there is a place where all trajectories become vertical (infinite slope).
This corresponds to the red line in the 1st diagram and the light blue line in the second diagram. The red line is
the place where ẏ1 = 0, that is y2 = y1. The light blue line is the place where ẋ1 = 0, that is −4x1+9x2+2 = 0.
Notice that the eigenvector E1 is a vector that starts at the origin and ends at the point (3, 1). This defines
the direction of the dark blue line. However, because in the second diagram the origin has been moved to the
point (5, 2), the eigenvector also has to be shifted there.
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4. Consider the equation ẋ = Ax with

A =

(
cos θ sin θ
− sin θ cos θ

)
and x ∈ [0, π].

• Show that the fixed point at the origin is simple.
A simple fixed point in one for which the matrix A has det(A) ̸= 0. The determinant of A in this
case is actually 1 for all values of θ, so all fixed points are simple in this case.

• Calculate the eigenvalues of A. Hence determine the values of θ for which the origin is:
The eigenvalues of A are the solutions of the equation:

(λ− cos θ)2 + (sin θ)2 = λ2 + (cos θ)2 − 2λ cos θ + (sin θ)2 = λ2 − 2λ cos θ + 1 = 0,

that is λ =
2 cos θ±

√
4(cos θ)2−4

2 = cos θ ± i sin θ = e±iθ.

(a) a stable star node: a star node only happens when A is a diagonal matrix, proportional to the
identity. This occurs whenever sin θ = 0, that is for θ = 0, π. For the node to be stable we need
cos θ > 0, so this selects the value of θ to be only θ = 0.

(b) an unstable star node: this is as the previous case, but now we need cos θ < 0 which selects out
the other values of θ, that is θ = π.

(c) a centre: this is when the eigenvalues are complex conjugated to each other with vanishing real
part. That is cos θ = 0, which corresponds to θ = π

2 .

(d) a stable focus: this requires complex conjugated eigenvalues, with negative real part. This means
that cos θ < 0 with sin θ ̸= 0. This corresponds to the interval π

2 < θ < π.

(e) an unstable focus: this requires complex conjugated eigenvalues, with positive real part. This
means that cos θ > 0 with sin θ ̸= 0. This corresponds to the interval 0 < θ < π

2 .
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