
Solutions to Sheet 4: nonlinear two dimensional systems

1. (a) The Jacobian matrix is defined as

A =

(
∂X1
∂x1

∂X1
∂x2

∂X2
∂x1

∂X2
∂x2

)
.

For system (a) this gives

Aa =
(

2x1x2 + x2 x2
1 + x1

cosx1 cosx2 − sin x1 sinx2

)
.

For system (b)

Ab =
(

2x1x
2
2 + sin x2 − ex1 2x2

1x2 + x1 cosx2

sin x2 − x2 sin x1 x1 cos x2 + cos x1

)
,

and for system (c)

Ac =
(

1 + x2 1 + x1

sin x2 − x2 sin x1 x1 cos x2 + cosx1

)
.

(b) The fixed point is the solution to the simultaneous equations

X1(x1, x2) = X2(x1, x2) = 0.

It is easy to check that for all three systems

X1(0, 0) = X2(0, 0) = 0,

so the origin is a fixed point.

(c) At the origin, the Jacobian matrices above become

Aa =
(

0 0
1 0

)
,

Ab =
( −1 0

0 1

)
,

Ac =
(

1 1
0 1

)
.

The linearised equations are simply ẋ = Ax, where A = Aa or A = Ab or A = Ac, depending
on the equations.

(d) A fixed point is simple, if the determinant of the Jacobian matrix is not zero. From the
previous section, it is clear that det(Aa) = 0 and det(Ab) = −1, det(Ac) = 1. Therefore the
fixed point at the origin is simple for systems (b) and (c) and nonsimple for system (a).

(e) For system (b), the Jacobian matrix Ab is already in Jordan form. The eigenvalues of the
matrix are real, with λ1 = −1 and λ2 = 1, therefore the fixed point at the origin is a saddle.
For system (c), we have to find the eigenvalues of the matrix Ac which are given by the solution
to the equation (1 − λ)2 = 0. Therefore, it has two equal, positive eigenvalues λ1 = λ2 = 1
which means the fixed point is an unstable improper node.

2. (a) The fixed points are the solutions of

x1 cosx2 = 0, x2 cosx1 = 0.

The first equation is satisfied for x1 = 0 or x2 = ±π
2 .

x1 = 0 solves the second equation also if an only if x2 = 0. Therefore we have a fixed point at
(0, 0).
x2 = ±π

2 only solves the second equation if cos x1 = 0, which gives x1 = ±π
2 as well. Altogether

we have five fixed points at

(0, 0),
(π

2
,
π

2

)
,

(π

2
,−π

2

)
,

(
−π

2
,
π

2

)
,

(
−π

2
,−π

2

)
.
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(b) The Jacobian is given by the matrix

A(x1,x2) =
(

cos x2 −x1 sin x2

−x2 sin x1 cosx1

)
.

(c) The linearised systems for each of the fixed points would be of the form,

ẋ = A(x1,x2)x, with (x1, x2) a fixed point,

and

A(0,0) =
(

1 0
0 1

)
, A(±π

2 ,±π
2 ) =

(
0 −π

2
−π

2 0

)
, A(±π

2 ,∓π
2 ) =

(
0 π

2
π
2 0

)
.

(d) In order to classify the fixed points we have to study the three matrices obtained in the
previous section. The matrix A(0,0) is a particularly easy case because it is the identity matrix.
Therefore, the fixed point at the origin must be an unstable star node.
For the other two matrices we need to work out the eigenvalues and eigenvectors. For both
matrices we have that the eigenvalues satisfy λ2 − π2

4 = 0 which gives eigenvalues λ1 = π
2 and

λ2 = −π
2 in both cases. This means that all other four fixed points in this case are saddles.

It will be useful for the sketch of the phase diagram to find the eigenvectors of these matrices.
The eigenvectors of A(±π

2 ,±π
2 ) can be computed to

E1 =
(

1
−1

)
, E2 =

(
1
1

)
,

whereas for A(±π
2 ,∓π

2 ) the eigevectors are exactly the same but with the names exchanged.

(e) The equation for dx2
dx1

is obtained just by dividing the original equations by each other

dx2

dx1
=

x2 cos x1

x1 cos x2
.

This equation is hard to solve in general, but it is possible to find particular solutions like the
ones suggested here. For example we can check that if x2 = ±x1 then the equation is satisfied
because in that case

dx2

dx1
= ±1.

(f) When x2 = 0 (the x1-axis) the equation for ẋ1 becomes just ẋ1 = x1 which is solved by
x1 = C1e

t, where C1 > 0 for x1 > 0 and C1 < 0 for x1 < 0.

(g) The phase diagram is shown in figure 1.

Figure 1: The phase diagram shows the unstable star node at the origin, with the four saddles around
it. We can see how the trajectories nicely merge in the regions between fixed points.
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3. (a) The new equations are

ẋ1 = x2, ẋ2 = x2(1− 3x2
1 − 2x2

2)− x1,

the first of which is linear, whereas the second equation is clearly nonlinear.

(b) In order to linearize the equations we need to compute the Jacobian matrix at a generic point
first

A(x1,x2) =
(

0 1
−6x1x2 − 1 1− 3x2

1 − 6x2
2

)
.

At the origin this is the matrix

A(0,0) =
(

0 1
−1 1

)
.

So, the linearised equations are ẋ = A(0,0)x.

(c) To classify the fixed point we need to find the eigenvalues of the Jacobian matrix:

−λ(1− λ) + 1 = 0, ⇔ λ1 =
1 + i

√
3

2
, λ2 =

1− i
√

3
2

.

This means that the fixed point is an unstable focus. A pair of eigenvectors associated to these
eigenvalues are

E1 =
(

1−i
√

3
2
1

)
, E2 =

(
1+i

√
3

2
1

)

The matrix P that relates A(0,0) to its Jordan form can be written in terms of the real and
imaginary parts of E1 as

P = (e1, e2) =
(

1
2 −

√
3

2
1 0

)
,

where e1 = Re(E1) and e2 = Im(E1). The Jordan form is

J =

(
1
2

√
3

2

−
√

3
2

1
2

)
.

The solution to the canonical equations ẏ = Jy is

y = r0e
t
2 cos(−

√
3

2
t + θ0)

(
1
0

)
+ r0e

t
2 sin(−

√
3

2
t + θ0)

(
0
1

)
,

where r0, θ0 are arbitrary constants. The solution to the linearised equations ẋ = A(0,0)x is

x = Py = r0e
t
2 cos(−

√
3

2
t + θ0)e1 + r0e

t
2 sin(−

√
3

2
t + θ0)e2,

or, in components

x1 =
1
2
r0e

t
2 cos(−

√
3

2
t + θ0)−

√
3

2
r0e

t
2 sin(−

√
3

2
t + θ0), x2 = r0e

t
2 cos(−

√
3

2
t + θ0).

The phase diagram associated to the linearised system would look as in figure 2.

(d) For an unstable focus we find that trajectories periodically cross the axes. The vector field
diagram shows however, that far enough from the origin a different behaviour will emerge (see
figure 3).
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Figure 2: The phase diagram shows the unstable focus at the origin. The blue line (the x1-axis) cor-
responds to the line at which all trajectories becomes vertical. This is because ẋ1 = 0 in this case
corresponds to x2 = 0. Because the focus is unstable all arrows point away from the origin. Trajectories
move clockwise as ẋ1 > 0 whenever x2 > 0.

Figure 3: The vector field diagram shows the behaviour of a focus close enough to the origin. However,
for trajectories a bit further from the origin we see that instead of crossing the axes they move towards
|x2| → ∞. A picture of some of these trajectories can be seen in the r.h.s. figure. Some “exact” phase
space trajectories are shown in that picture. You can work out the directions of the arrows by using
the equation ẋ1 = x2. The equation tells you that for x2 > 0, the arrows must point in the direction of
increasing x1 whereas for x2 < 0 the arrow must point in the direction of decreasing x1. For t →∞ the
trajectories tend to stay in some closed trajectory that spins around the origin.
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