No: 615.53

CITY UNIVERSITY

LONDON

BSc Honours Degree in Actuarial Science
BSc Honours Degrees in Mathematical Science
BSc Honours Degree in Statistical Science with Management Studies

PART II EXAMINATION

CALCULUS & LINEAR ALGEBRA

Monday 15 June 1998

1.00 pm - 4.00 pm

Time allowed: 3 hours

Full marks may be obtained for correct answers to FIVE of the EIGHT questions.

If more than FIVE questions are answered, the best FIVE marks will be credited.

Use a separate answer book for each section.

Section A

1. (a) Sketch the region of integration in the double integral

$$I = \int_0^1 dy \int_y^1 \cos(\frac{1}{2}\pi x^2) dx.$$

By changing the order of integration, evaluate I.

(b) Find the Jacobian of the transformation of coordinates

$$x = rcos\theta$$
, $y = rsin\theta$, $z = z$,

where

$$0 < \theta < 2\pi$$
, $0 < r < \infty$, $-\infty < z < \infty$.

Using the coordinates r, θ , z, determine the mass of the solid bounded by the cone $z^2 = x^2 + y^2$, $z \ge 0$ and the cylinder $x^2 + y^2 = a^2$, given that the density of the solid is defined by the function $(x^2 + y^2)z$.

2. (a) Use Taylor's theorem to expand the function $f(x,y) = (x^2 + y^2 - xy)e^{(x+y)}$ up to second-order terms in the components h, k of the displacements around the point (1, -1). Hence estimate the value of the function f at the point (1.1, -0.95).

(b) Using the method of Lagrange multipliers, find the shortest distance from the origin (0,0) to the curve

$$x^2 + 4xy + y^2 - 4 = 0.$$

3. Determine functions $y_1(x)$ and $y_2(x)$ in order that $y = Ay_1(x) + By_2(x)$ is the general solution of the second-order differential equation

$$\frac{d^2y}{dx^2} - y = 0,$$

where A, B are arbitrary constants. Show that the Wronskian of the functions $y_1(x)$ and $y_2(x)$ is nowhere zero.

Turn over ...

Use the method of variation of constants to find a particular solution of the inhomogeneous differential equation

$$\frac{d^2y}{dx^2} - y = \frac{2}{e^x + e^{-x}}.$$

Hence determine the general solution of this inhomogeneous equation.

- 4. (a) Given that x = cos(t), y = 2sin(t) and $f(x, y) = e^{-(x^2+y^2)}$, use partial differentiation to find df/dt in terms of t.
- (b) A change of variables $(u, v) \longmapsto (x, y)$ is defined by

$$x = \frac{1}{2}(u^2 - v^2), \ y = uv.$$

If f(x,y) is a twice differentiable function and f(x(u,v),y(u,v))=F(u,v), show that

$$\frac{\partial F}{\partial u} = u \frac{\partial f}{\partial x} + v \frac{\partial f}{\partial y}$$

$$\frac{\partial F}{\partial v} = -v \frac{\partial f}{\partial x} + u \frac{\partial f}{\partial y}.$$

Hence find expressions for $\partial^2 F/\partial u^2$ and $\partial^2 F/\partial v^2$.

Show that if

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$$

then

$$\frac{\partial^2 F}{\partial u^2} + \frac{\partial^2 F}{\partial v^2} = 0.$$

Turn over ...

Section B

5. Two maps s_0 and s_1 on \mathbb{R}^2 are defined by

$$s_0 \left(\begin{array}{c} x \\ y \end{array} \right) = \left(\begin{array}{cc} -1 & 2 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} x \\ y \end{array} \right)$$

and

$$s_1 \left(\begin{array}{c} x \\ y \end{array} \right) = \left(\begin{array}{cc} 1 & 0 \\ 2 & -1 \end{array} \right) \left(\begin{array}{c} x \\ y \end{array} \right) + \left(\begin{array}{c} 0 \\ -c \end{array} \right)$$

where $c \in \mathbb{N}$.

- (a) Show that $s_0 = s_1 = 1_{\mathbb{R}^2}$.
- (b) A subset T of \mathbb{R}^2 is said to be <u>fixed</u> under these maps if $s_0t \in T$ and $s_1t \in T$ for all $t \in T$. Show that for each $v \in \mathbb{R}^2$ there is an unique subset \mathcal{O}_v of \mathbb{R}^2 fixed under s_0 and s_1 such that
 - (i) $v \in \mathcal{O}_v$;
 - (ii) $\mathcal{O}_v \subseteq T$ for every subset T of \mathbb{R}^2 which contains v and is fixed under s_0 and s_1 .
- (c) Sketch a graph of the part of \mathcal{O}_v in the region

$$\left\{ \left(\begin{array}{c} x \\ y \end{array}\right) \mid -15 \le x \le 15, \ -15 \le y \le 15 \right\}$$

in case $v = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and c = 1.

- 6. (a) State the Cayley-Hamilton theorem.
 - (b) For

$$A = \left(\begin{array}{rrr} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}\right)$$

determine an orthogonal matrix P such that $P^{-1}AP$ is diagonal.

(c) Determine the eigenvalues and four corresponding linearly independent eigenvectors of

- 7. Give a matrix method for obtaining a sequence (r_n) of rational numbers with $r_n \to 1 + \sqrt{2}$ as $n \to \infty$. (You should explain the procedure in detail, but it is not necessary to prove convergence explicitly.)
- 8. Let V be the vector space (over the field \mathbb{R}) of all real 2×2 matrices and let

$$E_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, E_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, E_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, E_4 = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}.$$

- (a) Verify that the set $\{E_1, E_2, E_3, E_4\}$ is a basis for V.
- (b) Show that $\langle u, v \rangle = \operatorname{trace}(v^t u)$ defines an inner product on V.
- (c) Find $M \in V$ such that $\{E_1, E_2, E_3, M\}$ is an orthonormal basis with respect to <,>.

Internal Examiner: Prof.P.P.Martin