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If more than FIVE questions are answered,
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Use a separate answer book for each section.



Section A

1. (a) Sketch the region of integration in the double integral

1 V1—x2
I:/O dx/o e~ @) gy,

By transforming to polar coordinates, evaluate I.

(b) The region R in the positive octant (z > 0, y > 0, z > 0) is bounded by the
surface y = 422 and by the planes z = 0, y = 4, 2 = 0 and 2z = 2. Evaluate the

volume integral
/// 2x dxdydz.
R

2. (a) Find and classify the stationary points of the function

f(x,y) = a® + zy® — 122% — 2% + 21z

(b) Use Taylor’s theorem to expand the function f(z,y) = (z4y)e® ¥ up to second-
order terms in the components h, k of the displacements around the point (—1, —1).
Hence estimate the value of the function f at the point (—0.9,—1.05).

Turn over ...



3. Determine functions y;(x) and ys(x) in order that y(z) = Ay (x) + Bya(z) is the
general solution of the second-order differential equation

d2

where A, B are arbitrary constants. Show that the Wronskian of the functions y; ()
and yo(x) is nowhere zero.

Use the method of variation of constants to find a particular solution of the inho-
mogeneous differential equation

dy n n 1
— =r+——-.
dz2 Y cos(x)

Hence determine the general solution of this inhomogeneous equation.

4. (a) A change of variables (u,v) — (x,y) is defined by

1 1
T = §(u+v), y = Z(UZ +v?).

If f(z,y) is a twice differentiable function and f(z(u,v),y(u,v)) = F(u,v), show
that
OF OF Of = Of
ou + v Ox + $@y'
Show also that
PF  O0*F 107 2 2
+ =5 f+xaf+yaf+g.
ou?  ov?  20x? 0xy oy? Oy

(b) Given that F(x,y,z) = 0 defines z implicitly as a function of xz and y, derive
formulae for 0z/0x and 0z/0y in terms of partial derivatives of F.
If cos(z +y) + sin(y + z) = 1, determine 0z/0x and 0z/0y.

Turn over ...



Section B

5. (a) Show that the following mappings are linear, and determine the inverse
map, where appropriate:

(1)

M :R? 5 R?
defined by
M: (z,y)— Bz +y,x)
(ii)
N:R*=> R
defined by

N:(z,y,2) = 3x+y+=z
(b) Show that the following mappings are not linear:

(1)

S :R? -5 R?
defined by
S:(z,y)— Bz +y,z+1)
(i)
T:R*S R
defined by

T:(z,y,2) — 3z +yz
(c) Let M : R* — R* be defined by

M(z,y,2,t) = (x+2y — 2,y + 2,2 +y — 22,1).

Find bases for the image and kernel of M (you may assume M to be
linear).

Turn over...



6. Let n be a fixed but unspecified positive integer, and let M be the set of all
n X n matrices with complex coefficients.

(a) Explain what is meant by a similarity transformation on an element of
M. Show that similarity is an equivalence relation on M.
(b) Explain what is meant by the Jordan canonical form of a matrix in M.

(c) State the Cayley-Hamilton theorem, and prove it for the case of an n xn
matrix with n distinct eigenvalues.

(d) Determine the eigenvalues and four corresponding linearly independent
eigenvectors of

1 1 00
1 1 00
A= 0 011
0 011
7. Let D, denote the set of real n x n matrices for which the vector (1,1,---,1)*

is an eigenvector, with eigenvalue 0. Show that D,, is a subspace of the space
M,(R) of all real n X n matrices over R. An equivalence relation on M,(RR)
is defined by ApB if A — B € D,. Explain how operations of addition of
equivalence classes of p and multiplication of equivalence classes of p by a
scalar may be defined, and prove that with these operations the set of all
equivalence classes of p becomes a vector space over R.

8. Let V be the vector space (over R) of all real 2 x 2 matrices and let

10 11 11 1
E1_<0 0)’ E2_<0 0)’ E3_<1 0)’ E4_<1

(a) Verify that the set {E\, Es, E3, E4} is a basis for V.

(b) An inner product on V is given by < u,v > = trace(v*u). Determine an
orthonormal basis of V' with respect to <, >.
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