
2.5.2 Standard coordinate systems in R2 and R3

Similarly as for functions of one variable, integrals of functions of two or three variables may
become simpler when changing coordinates in an appropriate way. For this reason we are going
to introduce in this section the so-called standard coordinate systems which are used in 2 and
3-dimensions. Knowing these coordinate systems will allow us in the next section to perform
changes of variables in volume integrals.

Coordinate systems in R2

There are two standard coordinate systems which are used to describe points in 2-dimensional
space. These coordinate systems are

• the Cartesian coordinate system (which we normally use), in which we characterize
points by two coordinates (x, y) and

• the Polar coordinate system in which we characterize points in the 2-dimensional xy-
plane by their distance to the origin r and the angle θ (see figure 21).

As you see in the picture, both coordinate systems are related by the transformation

x = r cos θ, y = r sin θ, (2.303)

with 0 ≤ θ ≤ 2π, or equivalently

r =
√

x2 + y2, θ = tan−1
(y

x

)
. (2.304)

Figure 21:The polar and Cartesian coordinate systems.

Coordinate systems in R3

There are three standard coordinate systems which are used to describe points in 3-dimensional
space. These coordinate systems are
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• the Cartesian coordinate system (which we normally use), in which we characterize
points by three coordinates (x, y, z) and

• the cylindrical coordinate system: this coordinate system is a sort of generalization of
polar coordinates in two dimensions. In cylindrical coordinates a point in 3-dimensional
space is characterized by coordinates (r, θ, z), which are defined as shown in figure 22 (they
are the same as in polar coordinates plus one extra coordinate describing the height in the
z direction),

• the spherical coordinate system, in which a point in 3-dimensional space is character-
ized by the distance to the origin r and the angles θ, φ defined in figure 23,

Figure 22:The cylindrical and Cartesian coordinate systems.

Figure 23:The spherical and Cartesian coordinate systems.
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The relation between cylindrical and spherical coordinates and Cartesian coordinates is given
in the figures 21 and 23. For cylindrical coordinates we have

x = r cos θ, y = r sin θ, z = z, (2.305)

with 0 ≤ θ ≤ 2π or equivalently

r =
√

x2 + y2, θ = tan−1
(y

x

)
, z = z. (2.306)

For spherical coordinates we have

x = r cos θ sinφ, y = r sin θ sinφ, z = r cosφ, (2.307)

with 0 ≤ θ ≤ 2π and 0 ≤ φ ≤ π or equivalently

r =
√

x2 + y2 + z2, θ = tan−1
(y

x

)
, φ = tan−1

(√
x2 + y2

z

)
. (2.308)

Note: When is it convenient to use polar, cylindrical or spherical coordinates in-
stead of Cartesian coordinates? Essentially it depends on the characteristics of the inte-
gration region they are asking us to consider. For example, suppose we are asked to solve the
following problem: compute the volume of a sphere of radius 3, characterized by the
equation

x2 + y2 + z2 = 9. (2.309)

We can try to solve the problem in the same way we have seen in the previous examples. We
must sketch the region of integration (see figure 23), then determine the integration region in x,
y and z and compute the integral ∫ ∫ ∫

R
dxdydz. (2.310)

Figure 24:The integration region of our problem.

In terms of the coordinates x, y and z, the integration region is relatively complicated. In fact
it is given by

R =
{

(x, y, z) : −3 ≤ x ≤ 3, −
√

9− x2 ≤ y ≤
√

9− x2,

−
√

9− x2 − y2 ≤ z ≤
√

9− x2 − y2
}

. (2.311)
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If we now try to compute the integral we will soon see that it becomes rather complicated

V =
∫ x=3

x=−3
dx

∫ x=
√

9−x2

y=−√9−x2

dy

∫ z=
√

9−x2−y2

z=−
√

9−x2−y2

dz. (2.312)

The first integral gives

∫ z=
√

9−x2−y2

z=−
√

9−x2−y2

dz = [z]
√

9−x2−y2

−
√

9−x2−y2
= 2

√
9− x2 − y2. (2.313)

Inserting this result into the integral in y we have

∫ x=
√

9−x2

y=−√9−x2

2
√

9− x2 − y2dy. (2.314)

This integral is not completely trivial to do. The best way to do it is to change coordinates as

y =
√

9− x2 cosα ⇒ dy = −
√

9− x2sinαdα, (2.315)

with π ≤ α ≤ 0. Changing coordinates that way, the integral (2.314) becomes

−
∫ α=0

α=π
2(9− x2)sin2(α)dα =

∫ α=π

α=0
(9− x2)(1− cos(2α))dα

= (9− x2)
[
α− sin(2α)

2

]π

0

= (9− x2)π. (2.316)

Finally, integrating in x we obtain the volume

V = π

∫ x=3

x=−3
(9− x2)dx = π

[
9x− x3

3

]3

−3

= π

(
27− 27

3

)
− π

(
−27 +

27
3

)
= 36π. (2.317)

Therefore, the final result is 36π which is indeed the volume of a sphere of radius 3‡. This way
of computing the volume is correct but it is in fact much more complicated than if we had used
spherical coordinates from the beginning. In that case, the integration region is very easy to
determine

R = {(x, y, z) : 0 ≤ r ≤ 3, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π}, (2.318)

and the only difficulty is to determine how dx dy dz can be expressed in terms of
dr dθ dφ. We will see in the next section how this relation can be found. The result we are going
to find is

dx dy dz = r2 sinφdr dθ dφ. (2.319)

‡Remember that the volume of a sphere of radius r is given by:

V =
4

3
πr3.
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If we know this, then we can compute our integral very easily. It is just

V =
∫ r=3

r=0
r2dr

∫ θ=2π

θ=0
dθ

∫ φ=π

φ=0
sinφdφ

=
∫ r=3

r=0
r2dr

∫ θ=2π

θ=0
dθ [− cosφ]π0 = 2

∫ r=3

r=0
r2dr

∫ θ=2π

θ=0
dθ

= 2
∫ r=3

r=0
r2dr [θ]2π

0 = 4π

∫ r=3

r=0
r2dr = 4π

[
r3

3

]3

0

= 4π
27
3

= 36π. (2.320)

We can say as a conclusion that whenever the integration region is a sphere (or part of a sphere),
we must use spherical coordinates. If the integration region is a cylinder (or part of a cylinder),
we must use cylindrical coordinates. If the integration region is a disk (or part of one) it is best
to use polar coordinates.
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