
2.5.3 Change of variables and Jacobians

In the previous example we saw that, once we have identified the type of coordinates which is
best to use for solving a particular problem, the next step is to do the change of coordinates
on the integral we want to compute. One way to see how this goes, is to draw a picture of
an infinitesimal element of volume (or surface, if we are doing an integral of a function of two
variables) and compute its volume (surface) in terms of the new variables. Let us do that for
the simplest case of two variables.

Figure 25:Differentials of surface.

Consider an infinitesimal rectangle in Cartesian coordinates. Its area is given by ds = dx dy.
What is the surface of an elementary infinitesimal region in polar coordinates? The answer
follows from figure 25, that is

dx dy = r dθ dr. (2.321)

Therefore, given an integral

I =
∫ ∫

R
f(x, y)dxdy, (2.322)

a change to polar coordinates will give

I =
∫ ∫

R′
f(r cos θ, r sin θ)rdθdr, (2.323)

where R′ is the integration region R in terms of the new coordinates.

Example: Compute the integral

I =
∫ ∫

R

√
x2 + y2dxdy, (2.324)

on a disk of radius a. This is a typical case in which the best is to use polar coordinates
(the integration region is a disk!). In polar coordinates

R = {(r, θ) : 0 ≤ r ≤ a, 0 ≤ θ ≤ 2π}. (2.325)

In addition, we have seen before that
√

x2 + y2 = r, dx dy = r dr dθ, (2.326)
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therefore, the integral in polar coordinates is simply

I =
∫ r=a

r=0
r2dr

∫ θ=2π

θ=0
dθ. (2.327)

The integral in θ is just ∫ θ=2π

θ=0
dθ = [θ]2π

0 = 2π. (2.328)

So we finally get

I = 2π

∫ r=a

r=0
r2dr = 2π

[
r3

3

]a

0

=
2πa3

3
. (2.329)

We have found the result (2.321) from geometrical considerations (from figure 25). This can be
done for any change of coordinates, in 2 or 3 dimensions. However there is a more systematic
way to compute the element of volume or surface under a change of coordinates. In general we
have:

Definition: Let (x, y) be the Cartesian coordinates in 2-dimensional space and consider a
generic change of variables

x = x(u, v), and y = y(u, v), (2.330)

(u, v) being the new variables. Then the differentials of surface are related in the following way

dx dy = |J | du dv, (2.331)

where |J | is the modulus of the following determinant

J =

∣∣∣∣∣∣∣∣∣

∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣∣
(2.332)

This determinant is called the Jacobian of the transformation of coordinates.

Example 1: Use the Jacobian to obtain the relation between the differentials of surface in
Cartesian and polar coordinates.

The relation between Cartesian and polar coordinates was given in (2.303). We can easily
compute the Jacobian,

J =

∣∣∣∣∣∣∣∣∣

∂x

∂r

∂x

∂θ

∂y

∂r

∂y

∂θ

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣
cos θ −r sin θ
sin θ r cos θ

∣∣∣∣ = r cos2 θ + r sin2 θ = r. (2.333)

Therefore
dx dy = r dr dθ, (2.334)

which is the same result as (2.321).
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Example 2: Find the Jacobian of the transformation

x = v/u, and y = v. (2.335)

Using these new variables evaluate the integral

I =
∫ x=1

x=0

∫ y=x

y=0

y2

x2
ey/xdxdy (2.336)

We start by computing the Jacobian

J =

∣∣∣∣∣∣∣∣∣

∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣
−v/u2 1/u

0 1

∣∣∣∣ = − v

u2
. (2.337)

Therefore
dx dy = |J |du dv =

v

u2
du dv. (2.338)

Now we have to transform the function we want to integrate,

y2

x2
ey/x = u2eu, (2.339)

and we have to find the new integration region

0 ≤ x ≤ 1 ⇔ 0 ≤ v ≤ u, (2.340)
0 ≤ y ≤ x ⇔ 0 ≤ u ≤ 1. (2.341)

Therefore the integral we need to compute is

I =
∫ u=1

u=0
eudu

∫ v=u

v=0
v dv. (2.342)

The first integral is ∫ v=u

v=0
v dv =

[
v2

2

]v=u

v=0

=
u2

2
, (2.343)

and so

I =
1
2

∫ u=1

u=0
u2eudu. (2.344)

This integral can be done by using integration by parts twice
∫ u=1

u=0
u2eudu =

[
u2eu

]1

0
−

∫ u=1

u=0
2ueudu = e−

∫ u=1

u=0
2ueudu

= e− [2ueu]10 +
∫ u=1

u=0
2eudu = e− 2e +

∫ u=1

u=0
2eudu

= [2eu]10 − e = 2e− 2− e = e− 2. (2.345)

Therefore
I =

e− 2
2

. (2.346)
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Definition: Let (x, y, z) be the Cartesian coordinates in 3-dimensional space and consider a
generic change of variables

x = x(u, v, t), y = y(u, v, t) and z = z(u, v, t), (2.347)

(u, v, t) being the new variables. Then the differentials of surface are related in the following
way

dx dy dz = |J | du dv dt, (2.348)

where |J | is the modulus of the following determinant

J =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x

∂u

∂x

∂v

∂x

∂t

∂y

∂u

∂y

∂v

∂y

∂t

∂z

∂u

∂z

∂v

∂z

∂t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(2.349)

This determinant is called the Jacobian of the transformation of coordinates.

Example 1: The Jacobian of cylindrical coordinates.

The relation between Cartesian and cylindrical coordinates was given in (2.305). We can
easily compute the Jacobian,

J =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x

∂r

∂x

∂θ

∂x

∂z

∂y

∂r

∂y

∂θ

∂y

∂z

∂z

∂r

∂z

∂θ

∂z

∂z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣

cos θ −r sin θ 0
sin θ r cos θ 0

0 0 1

∣∣∣∣∣∣
= r cos2 θ + r sin2 θ = r. (2.350)

Therefore
dx dy dz = |J | dr dθ dz,= r dr dθ dz, (2.351)

Example 2: The Jacobian of spherical coordinates.

The relation between Cartesian and spherical coordinates was given in (2.307). The Jaco-
bian is,

J =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x

∂r

∂x

∂θ

∂x

∂φ

∂y

∂r

∂y

∂θ

∂y

∂φ

∂z

∂r

∂z

∂θ

∂z

∂φ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣

cos θ sinφ −r sin θ sinφ r cos θ cosφ
sin θ sinφ r cos θ sinφ r sin θ cosφ

cosφ 0 −r sinφ

∣∣∣∣∣∣

= −r2 cos2 θ sin3 φ− r2 sin2 θ cos2 φ sinφ− r2 cos2 θ cos2 φ sinφ

− r2 sin2 θ sin3 φ = −r2 sin3 φ(cos2 θ + sin2 θ)− r2 cos2 φ sinφ(cos2 θ + sin2 θ)
= −r2 sin3 φ− r2 cos2 φ sinφ = −r2 sinφ(sin2 φ + cos2 φ) = −r2 sinφ. (2.352)
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Therefore
dx dy dz = |J | dr dθ dφ = r2 sinφdr dθ dφ, (2.353)

Let us now see a couple of examples of integral where we use cylindrical and spherical coordinates:

Example 1: Use cylindrical coordinates to evaluate the following integral
∫ ∫ ∫

R
(x2 + y2)dxdydz, (2.354)

where R is the solid bounded by the surface x2 + y2 = 2z and the plane z = 2.

As usual, we start by sketching the integration region. The first equation x2 +y2 = 2z is a
paraboloid (one of the quadratic surfaces we saw some time ago!). The integration region
looks more or less like that

Figure 26:The integration region of our problem.

Now we want to do the integral in cylindrical coordinates. We have seen before that

x2 + y2 = r2, dx dy dz = r dr dθ dz (2.355)

so the integral we want to compute is
∫ ∫ ∫

R′
r3drdθdz, (2.356)

where R′ is the integration region in cylindrical coordinates. From the picture and the
information given by the problem it is easy to find

R′ = {(r, θ, z) : 0 ≤ r ≤
√

2z, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ 2}. (2.357)

Therefore our integral is ∫ z=2

z=0
dz

∫ θ=2π

θ=0
dθ

∫ r=
√

2z

r=0
r3dr. (2.358)
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The integral in r is ∫ r=
√

2z

r=0
r3dr =

[
r4

4

]√2z

0

= z2. (2.359)

The integral in θ is simply ∫ θ=2π

θ=0
dθ = [θ]2π

0 = 2π. (2.360)

Therefore, the final result is

2π

∫ z=2

z=0
z2dz =

[
z3

3

]2

0

=
16π

3
. (2.361)

Example 2: Use spherical coordinates to compute the volume of the solid bounded above by
the sphere x2 + y2 + z2 = 16 and below by the cone z =

√
x2 + y2.

The region of integration for this problem is given in the picture below:

Figure 27:The sphere x2 + y2 + z2 = 16 and the cone z =
√

x2 + y2. The dashed region is our
integration region.

The integral we have to compute is
∫ ∫ ∫

R
dxdydz =

∫ ∫ ∫

R′
r2 sinφdrdθdφ. (2.362)

Here we have only used the result (2.353) and we called R′ the integration in spherical
coordinates. In order to determine R′ we notice the following: the equation of the sphere
in figure 26 in spherical coordinates (see (2.307)) is just

x2 + y2 + z2 = r2 = 16, (2.363)
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and the equation of the cone is

r cosφ =
√

r2 sin2 φ cos2 θ + r2 sin2 φ sin2 θ = r sinφ, (2.364)

from this equation it follows

tanφ = 1 ⇒ φ =
π

4
. (2.365)

This is the angle of the cone with respect to the z axes. Therefore, we just have to integrate
in the following region

R′ = {(r, θ, φ) : 0 ≤ r ≤ 4, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π/4}. (2.366)

The volume is thus

V =
∫ r=4

r=0
r2dr

∫ θ=2π

θ=0
dθ

∫ φ=π/4

φ=0
sinφdφ, (2.367)

with ∫ φ=π/4

φ=0
sinφdφ = [− cosφ]φ=π/4

φ=0 = − 1√
2

+ 1 =
2−√2

2
. (2.368)

∫ θ=2π

θ=0
dθ = [θ]2π

0 = 2π, (2.369)

and ∫ r=4

r=0
r2dr =

[
r3

3

]4

0

=
64
3

. (2.370)

Therefore the volume is

V =
64π(2−√2)

3
. (2.371)
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