
REVISION CALCULUS 2008/09



FUNCTIONS OF TWO VARIABLES

f : D(f) ∈ R2 → R(f) ∈ R
(x, y) ∈ D(f) → f(x, y) ∈ R(f)

• Domain of f : set of points (x, y) at which the function is well defined, e. g.

f(x, y) =
1

x− y
⇒ D(f) = {(x, y) : x 6= y}

• Range of f : range of values the function takes in its domain, e. g.

f(x, y) =
√

9− x2 − y2 ⇒ R(f) = {0 ≤ f(x, y) ≤ 3}

f(x, y) =
√

9− x2 − y2 ⇒ D(f) = {(x, y) : x2 + y2 ≤ 9}



• Limits: The limit

lim
(x,y)→(x0,y0)

f(x, y)

exists only if it is unique. For example, the limit

lim
(x,y)→(1,2)

2(x− 1)(y − 2)
(x− 1)2 + (y − 2)2

= lim
(x,k(x−1)+2)→(1,2)

2k(x− 1)2

(x− 1)2 + k2(x− 1)2
=

2k

1 + k2
,

does not exist.



PARTIAL DERIVATIVES

They can be computed in two ways:

• Definition through a limit:

fx =
∂f

∂x
= lim

h→0

f(x + h, y)− f(x, y)
h

,

fy =
∂f

∂y
= lim

h→0

f(x, y + h)− f(x, y)
h

.

• By using our knowledge of the derivatives of elementary functions, e.g. for

f(x, y) = x2 cos y + 2xy,

the 1st order partial derivatives are

fx =
∂f

∂x
= cos y

dx2

dx
+ 2y

dx

dx
= 2x cos y + 2y,

fy =
∂f

∂y
= x2 d cos y

dy
+ 2x

dy

dy
= −x2 sin y + 2x.



CHAIN RULES

Given a function

f(x(t), y(t)),

the chain rule tells us that the partial derivative ft can be obtained as

ft =
∂f

∂t
=

∂f

∂x

∂x

∂t
+

∂f

∂y

∂y

∂t
≡ fxxt + fyyt,

Given a function

f(x(s, t), y(s, t)),

the chain rule tells us that the partial derivatives fs and ft can be obtained as

fs =
∂f

∂s
=

∂f

∂x

∂x

∂s
+

∂f

∂y

∂y

∂s
≡ fxxs + fyys,

ft =
∂f

∂t
=

∂f

∂x

∂x

∂t
+

∂f

∂y

∂y

∂t
≡ fxxt + fyyt,

provided that fx and fy are continuous functions.



Consequently:

∂fx

∂s
=

∂fx

∂x

∂x

∂s
+

∂fx

∂y

∂y

∂s
≡ fxxxs + fyxys,

∂fx

∂t
=

∂fx

∂x

∂x

∂t
+

∂fx

∂y

∂y

∂t
≡ fxxxt + fyxyt,

∂fy

∂s
=

∂fy

∂x

∂x

∂s
+

∂fy

∂y

∂y

∂s
≡ fxyxs + fyyys,

∂fy

∂t
=

∂fy

∂x

∂x

∂t
+

∂fy

∂y

∂y

∂t
≡ fxyxt + fyyyt.

These formulae will be important if we compute for example

fss =
∂(fxxs + fyys)

∂s
=

∂fx

∂s
xs + fx

∂xs

∂s
+

∂fy

∂s
ys + fy

∂ys

∂s
,



Example:
x = sin(st) y = cos(st) ⇒

xs = t cos(st), xt = s cos(st), ys = −t sin(st) yt = −s sin(st).

∂f

∂s
=

∂f

∂x
(t cos(st)) +

∂f

∂y
(−t sin(st)),

∂f

∂t
=

∂f

∂x
(s cos(st)) +

∂f

∂y
(−s sin(st))

∂2f

∂s2
=

∂

∂s
(fx(t cos(st)) + fy(−t sin(st)))

=
∂fx

∂s
(t cos(st)) + fx

∂(t cos(st))
∂s

+
∂fy

∂s
(−t sin(st))

+fy
∂(−t sin(st))

∂s
,



with

∂fx

∂s
=

∂fx

∂x
(t cos(st)) +

∂fx

∂y
(−t sin(st))

= fxx(t cos(st)) + fyx(−t sin(st)),
∂(t cos(st))

∂s
= −t2 sin(st),

∂fy

∂s
=

∂fy

∂x
(t cos(st)) +

∂fy

∂y
(−t sin(st))

= fxy(t cos(st)) + fyy(−t sin(st)),
∂(−t sin(st))

∂s
= −t2 cos(st).

Therefore,

∂2f

∂s2
= −fx(t2 sin(st))− fy(t2 cos(st)) + t2 cos2(st)fxx

+ t2 sin2(st)fyy − t2 sin(2st)fxy,



APPROXIMATIONS OF FUNCTIONS ABOUT A POINT

• First differential:

df =
(

∂f

∂x

)
dx +

(
∂f

∂y

)
dy = fxdx + fydy,

The value of the function at a point (x, y) near the point (x0, y0) would be

approximately:

f(x, y) ≈ f(x0, y0) + df = f(x0, y0) + fx(x0, y0)dx + fy(x0, y0)dy,

where

dx = x− x0, dy = y − y0.



For example, if

f(x, y) = x2y4,

and we want to obtain the value of the function at f(1.05, 1.06) then we can use

f(1.05, 1.06) ≈ f(1, 1) + df = f(1, 1) + (0.05)fx(1, 1) + (0.06)fy(1, 1).

Since

fx = 2xy4, fy = 4x2y3 ⇒ fx(1, 1) = 2, fy(1, 1) = 4,

we obtain

f(1.05, 1.06) ≈ 1 + 2(0.05) + 4(0.06) = 1 + 0.1 + 0.24 = 1.34.

The exact value of the function at this point is

f(1.05, 1.06) = (1.05)2(1.06)4 = 1.39188,

so the approximation is quite good!



• Taylor expansion about the point (x0, y0) (up to second-order terms):

f(x, y) = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)

+ fyx(x0, y0)(x− x0)(y − y0) +
1
2
fyy(x0, y0)(y − y0)2

+
1
2
fxx(y0, x0)(x− x0)2 + · · ·

For example, we consider the function

f(x, y) =
√

x2 + y3,

and we expand it about the point (1, 2) until second-order terms. We need:

f(1, 2) = 3,

fx =
2x

2
√

x2 + y3
⇒ fx(1, 2) =

1
3
,

fy =
3y2

2
√

x2 + y3
⇒ fy(1, 2) = 2,



fxx =
y3

(x2 + y3)3/2
⇒ fxx(1, 2) =

8
27

fyy =
3y(4x2 + y3)
4(x2 + y3)3/2

⇒ fyy(1, 2) =
2
3
,

fxy = fyx = − 3xy2

2(x2 + y3)3/2
⇒ fxy(1, 2) = −2

9
.

Therefore

f(x, y) = 3 +
1
3
(x− 1) + 2(y − 2)− 2

9
(x− 1)(y − 2) +

1
3
(y − 2)2

+
4
27

(x− 1)2 =
1
27

(−8 + 4x2 + 13x− 6xy + 24y + 9y2).



DERIVATIVES OF IMPLICIT FUNCTIONS

Functions are defined implicitly when they are given by means of a constraint,

F (x, y, z) = 0,

which involves the independent variables x, y and the function z = f(x, y).

Employing

dF = Fxdx + Fydy + Fzdz = 0,

dz = fxdx + fydy,

one can obtain the following formulae:

∂z

∂x
= −Fx

Fz
,

∂z

∂y
= −Fy

Fz
.



Example: Given

F (x, y, z) = (x2 + y2 + z2) sin(z + x + y) = 0,

we have

Fx = 2x sin(x + y + z) + (x2 + y2 + z2) cos(z + x + y),

Fy = 2y sin(x + y + z) + (x2 + y2 + z2) cos(z + x + y),

Fz = 2z sin(x + y + z) + (x2 + y2 + z2) cos(z + x + y).

Therefore

∂z

∂x
= −Fx

Fz
= −2x sin(x + y + z) + (x2 + y2 + z2) cos(z + x + y)

2z sin(x + y + z) + (x2 + y2 + z2) cos(z + x + y)
,

∂z

∂y
= −Fy

Fz
= −2y sin(x + y + z) + (x2 + y2 + z2) cos(z + x + y)

2z sin(x + y + z) + (x2 + y2 + z2) cos(z + x + y)
.



CLASSIFICATION OF STATIONARY POINTS

AC −B2 > 0 < 0 0

A > 0 minimum saddle point inconclusive

A < 0 maximum saddle point inconclusive

A = 0 saddle point inconclusive

with

A = fxx(x0, y0), C = fyy(x0, y0), B = fxy(x0, y0)

fx(x0, y0) = fy(x0, y0) = 0.

Example: Let

f(x, y) = x2 + y2 ⇒

fx = 2x, fy = 2y, fxx = 2, fyy = 2, fxy = 0.



Therefore, the only point we have to consider is (x, y) = (0, 0) where

fx(0, 0) = fy(0, 0) = 0.

At this point

AC −B2 = (2)(2)− 0 = 4 > 0

and

A = 2 > 0

(0, 0) is a minimum and the only stationary point of this function.



LAGRANGE MULTIPLIERS

The method of Lagrange multipliers allows us to treat “constrained extreme-value

problems”. This means finding the minimum or maximum value of a function

f(x, y, z),

subject to a certain constraint

φ(x, y, z) = 0.

The problem can be solved by constructing a linear combination of these two

functions

f + λφ,

where λ is called the Lagrange multiplier and imposing that

df + λdφ = 0 ⇒ fx + λφx = fy + λφy = fz + λφz = 0.

These 3 equations, together with the constraint itself, give a system of 4

equations which can be solved for the unknowns x, y, z, λ.



Example: Obtain the maximum value of the function

f(x, y, z) = xy + z3,

if x, y, z satisfy

x + y + z = 1 ⇒ φ(x, y, z) = 0 = x + y + z − 1.

fx = y, fy = x, fz = 3z2,

φx = 1, φy = 1, φz = 1.

And so we have to solve the equations

y + λ = 0,

x + λ = 0,

3z2 + λ = 0,

x + y + z − 1 = 0.



From the 3 first equations we get

λ = −y = −x = −3z2 ⇒ x = y = 3z2,

substituting this into the last equation we obtain

z + 6z2 = 1 ⇒ z = −1
2
,
1
3
.

Therefore the solutions are

(x, y, z) = (3/4, 3/4,−1/2) λ = −3/4,

and

(x, y, z) = (1/3, 1/3, 1/3) λ = −1/3,

since

f(3/4, 3/4,−1/2) = 9/16− 1/8 = 7/16 ≈ 0.42,

f(1/3, 1/3, 1/3) = 1/9− 1/27 = 2/27 ≈ 0.07

the point (3/4, 3/4,−1/2) is the solution to the problem!



INTEGRATION OF FUNCTIONS OF SEVERAL VARIABLES

• 2-dimensional integrals:
∫ ∫

R

f(x, y)dxdy

We saw basically two types of integrals, depending on the integration region R:

R = {(x, y) : a ≤ x ≤ b c ≤ y ≤ d}

and

R = {(x, y) : a ≤ x ≤ b g1(x) ≤ y ≤ g2(x)}
or

R = {(x, y) : a ≤ y ≤ b h1(y) ≤ x ≤ h2(y)}



Example:
∫ x=3

x=0

dx

∫ y=2

y=0

xy2dy.

If we do the y-integral first:

∫ y=2

y=0

y2dy =
[
y3

3

]y=2

y=0

=
8
3
,

and then the integral in x

∫ x=3

x=0

xdx =
[
x2

2

]x=3

x=0

=
9
2
.

Therefore the value of the integral would be

∫ x=3

x=0

dx

∫ y=2

y=0

xy2dy =
(

8
3

) (
9
2

)
= 12.



The second type of integrals is a bit more complicated because the order of

integration matters. Therefore if we want to change the order of integration, we

also have to change our description of the integration region R.

Example: Sketch the region of integration in the double integral

I =
∫ y=2

y=0

dy

∫ x=1

x=y/2

cos(x2)dx.

By changing the order of integration, evaluate I.



From the picture it is easy to see that changing the order of integration we obtain

I =
∫ x=1

x=0

dx

∫ y=2x

y=0

cos(x2)dy.

The integral in y gives

∫ y=2x

y=0

cos(x2)dy =
[
y cos(x2)

]2x

0
= 2x cos(x2).

Plugging this result into the second integral we obtain

I =
∫ x=1

x=0

2x cos(x2)dx =
[
sin(x2)

]1
0

= sin(1).



CHANGES OF VARIABLES AND JACOBIANS

We have seen 3 changes of coordinates which are especially important:

• the Polar coordinate system:

x = r cos θ y = r sin θ,

the element of surface is: dxdy = rdrdθ

• the Cylindrical coordinates:

x = r cos θ y = r sin θ, z = z

the element of volume is: dxdydz = rdrdθdz

• the Spherical coordinates:

x = r cos θ sin φ y = r sin θ sin φ, z = r cosφ.

the element of volume is: dxdydz = r2 sin φdrdθdφ

Elements of surface and volume are obtained from the Jacobian determinant.



The Jacobian determinant is built out of the derivatives of the old variables with

respect to the new ones:

(x, y) → (u, v)

then

dxdy = |J |dudv, J =

∣∣∣∣∣∣
xu xv

yu yv

∣∣∣∣∣∣
and if we have 3 variables,

(x, y, z) → (u, v, t)

then

dxdydz = |J |dudvdt

with

J =

∣∣∣∣∣∣∣∣

xu xv xt

yu yv yt

zu zv zt

∣∣∣∣∣∣∣∣



Example: Consider the change of variables:

x = s + 3t, y = s− 3t,

then the Jacobian would be

J =

∣∣∣∣∣∣∣∣∣

∂x

∂s

∂x

∂t

∂y

∂s

∂y

∂t

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
1 3

1 −3

∣∣∣∣∣∣
= −3− 3 = −6,

Therefore the new element of surface would be

dxdy = 6dsdt



3D INTEGRALS

These are harder to do because it is more difficult to visualize the integration

region! However we have to try to get at least an idea of how this region looks like:

• Sketch integration region (as good as we can)

• Change coordinates when appropriate (usually this will be said)

• Be familiar with quadratic surfaces such as spheres x2 + y2 + z2 = a2,

cones z2 = x2 + y2, cylinders x2 + y2 = 1 and paraboloids z = x2 + y2!



METHOD OF VARIATION OF PARAMETERS

We have seen a new method to solve second-order linear differential equations of

the type:

y′′ + ay′ + by = R(x).

The general solution of such an equation is given by

y = yh + yp
i ,

where

yh(x) = c1u1(x) + c2u2(x),

is the general solution of the homogeneous equation

y′′ + ay′ + by = 0,

and yp
i is a particular solution of the inhomogeneous equation. This solution can

be found by using the method of variation of parameters

yi
p(x) = v1(x)u1(x) + v2(x)u2(x),



with

v1(x) = −
∫

u2(x)
R(x)
W (x)

dx and v2(x) =
∫

u1(x)
R(x)
W (x)

dx,

and

W (x) = u1(x)u′2(x)− u2(x)u′1(x).



Example: Suppose we want to solve

y′′ + 2y′ + 2y =
e−x

cos3(x)
.

Homogeneous equation: we try solutions y = cemx,

m2 + 2m + 2 = 0 ⇒ m = −1± i,

that is

yh = c1e
−x sin x + c2e

−x cosx,

therefore

u1(x) = e−x sin x u2(x) = e−x cosx,

and

u′1(x) = −e−x sin x + e−x cos x u′2(x) = −e−x cosx− e−x sinx.

From these functions we can prove that

W (x) = −e−2x.



With this information we can now find the particular solution of the

inhomogeneous equation:

yi
p(x) = v1(x)u1(x) + v2(x)u2(x),

with

v1(x) =
∫

1
cos2(x)

dx and v2(x) = −
∫

sin x

cos3 x
dx.

To do the second integral we can change variables as t = cos x

v2(x) = −
∫

t−3dt =
1
2
t−2 =

1
2 cos2 x

,

and the first integral is direct

v1(x) = tan x.

y = e−x sin x(c1 + tan x) + e−x cos x(c2 + 1/(2 cos2 x))


