
CALCULUS 1998: EXAM SOLUTIONS

1. (a) The integration region is the triangle formed by the intersection of the lines y = x,
y = 0 and x = 1. Once we have identified the integration region, it is easy to change
the order of integration to write I equivalently as

I =
∫ x=1

x=0
dx

∫ y=x

y=0
cos

(
πx2

2

)
dy.

The integral
∫ y=x

y=0
cos

(
πx2

2

)
dy =

[
y cos

(
πx2

2

)]x

0

= x cos
(

πx2

2

)
− 0 = x cos

(
πx2

2

)
,

is trivial to do, since the argument does not depend on y. Now the second integral
is also very easy to do, since we have the product of the cosine of a function and the
derivative of that function, therefore

I =
∫ x=1

x=0
x cos

(
πx2

2

)
dx =

[
1
π

sin
(

πx2

2

)]1

0

=
1
π
− 0 =

1
π

.

If you do not realize how to do the integral directly, you can also change variables to
t = πx2/2 which gives dt = πxdx and allows you to rewrite the integral above as

I =
∫ x=1

x=0
x cos

(
πx2

2

)
dx =

1
π

∫ t=π/2

t=0
cos(t) dt =

1
π

[sin(t)]π/2
0 =

1
π

.

(b) These are the cylindrical coordinates we have studied in the course. The Jacobian
is the determinant of the following matrix

J =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x

∂r

∂x

∂θ

∂x

∂z

∂y

∂r

∂y

∂θ

∂y

∂z

∂z

∂r

∂z

∂θ

∂z

∂z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣

cos θ −r sin θ 0
sin θ r cos θ 0

0 0 1

∣∣∣∣∣∣
= r cos2 θ + r sin2 θ = r.

Therefore, the element of volume which we need to use for the integral is

dx dy dz = |J | dr dθ dz = r dr dθ dz.

We will need to use this element of volume for the next part of the exercise. Here
they ask us to compute the mass of a solid and they tell us that its density is the
function (x2 + y2)z. Since the density is mass per unit of volume, what the problem is
asking us is to integrate the density function in the volume bounded by the cone and
the cylinder, whose equations are given in the problem. In cylindrical coordinates the
density is just

(x2 + y2)z = r2z,
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and the equations of the cone and the cylinder become

z2 = r2, z ≥ 0,

and
r2 = a2,

respectively. Since r is always positive (it is a distance!) the equations above are
equivalent to:

z = r and r = a.

Therefore, the integration region is the dashed volume as sketched in the figure below,

and corresponds to

R = {(r, θ, z) | z ≤ r ≤ a, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ a}.
Therefore, we have to do the integral

m =
∫ z=a

z=0

∫ r=a

r=z

∫ θ=2π

θ=0
r3zdr dz dθ.

Notice that the r3 in the integral comes from the factor r2 of the density function and
the factor r in the Jacobian. The first integral is simply

∫ θ=2π

θ=0
r3zdθ = 2πr3z.

Plugging that back into the r-integral we obtain
∫ r=a

r=z
2πr3zdr =

[
2πz

r4

4

]r=a

r=z

=
π

2
z(a4 − z4).
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We can now finally compute the mass by carrying out the last integral in z

m =
∫ z=a

z=0

π

2
z(a4−z4)dz =

π

2

[
a4 z2

2
− z6

6

]z=a

z=0

=
π

2

(
a4 a2

2
− a6

6

)
−0 =

πa6

2

(
1
2
− 1

6

)
=

πa6

6
.

2. The Taylor expansion of a function of two variables f(x, y) around a point (x0, y0) up
to second order terms is given by

f(x, y) = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)

+
1
2
fxx(x0, y0)(x− x0)2 +

1
2
fyy(x0, y0)(y − y0)2 + fxy(x0, y0)(x− x0)(y − y0),

assuming fxy = fyx. In our case (x0, y0) = (1,−1) and

fx = (2x + x2 − y − xy + y2)ex+y, fy = (2y − x + x2 − xy + y2)ex+y,

fxx = (2 + 4x + x2 − 2y − xy + y2)ex+y, fyy = (2− 2x + x2 + 4y − xy + y2)ex+y,

fxy = fyx = (−1 + x + x2 + y − xy + y2)ex+y.

Therefore

fx(1,−1) = 6, fy(1,−1) = 0, fxx(1,−1) = 11,
fyy(1,−1) = −1, fxy(1,−1) = fyx(1,−1) = 2,

and f(1,−1) = 3. With this we obtain the following Taylor expansion

f(x, y) = 3 + 6(x− 1) +
11
2

(x− 1)2 − 1
2
(y + 1)2 + 2(x− 1)(y + 1)

=
1
2
(11x2 − y2 + 4xy − 6(x + y)).

The Taylor expansion in terms of the displacements h and k is obtained simply by
replacing x = x0 + h = h + 1 and y = y0 + k = k − 1 in our last formula. It gives

f(h, k) =
1
2
(6 + 12h + 4hk + 11h2 − k2).

The approximate value of f(1.1,−0.95) is

f(1.1,−0.95) ' 1
2
(11(1.1)2 − (0.95)2 − 4(1.1)(0.95)− 6(1.1− 0.95)) = 3.6638.

The exact value of the function at that point is

f(1.1,−0.95) = ((1.1)2 + (0.95)2 + (1.1)(0.95))e1.1−0.95 = 3.66849,

so the Taylor expansion up to second-order terms is a very good approximation for the
point (1.1,−0.95).

(b) (b) In this case our constraint is

φ(x, y) = y2 + x2 + 4xy − 4 = 0, (0.1)
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and the function we want to minimize is the distance from the point (0, 0) to a point
(x, y) in the curve above. The square of the distance is the function

f(x, y) = x2 + y2,

and the key thing to notice in the problem is that the curve lies on the xy-plane and
therefore the point which is closest to (0, 0) and lies in the curve (0.1) has coordinate
z = 0 (it is contained on the xy-plane). This means that we have a problem of Lagrange
multipliers but we only have equations in x and y. The corresponding partial derivatives
of f and φ are

fx = 2x, fy = 2y,

φx = 2x + 4y, φy = 2y + 4x.

Therefore we need to solve the following system of equations

y2 + x2 + 4xy − 4 = 0 = 0,
2x + λ(2x + 4y) = 0,

2y + λ(2y + 4x) = 0.

The last two equations give

λ = − x

x + 2y
= − y

y + 2x
.

and from this equality we obtain

x(y + 2x) = y(x + 2y) ⇒ x2 = y2 ⇒ x = ±y.

For x = y we obtain λ = −1/2 and for x = −y we have λ = 1. Substituting x = y into
the constraint (0.1) we obtain

6x2 − 4 = 0 ⇒ x2 =
2
3

⇒ x = y = ±
√

2
3
.

Taking now the other solution x = −y and substituting it into (0.1) we obtain

−2x2 − 4 = 0 ⇒ x2 = −2,

and this solution does not make sense, since it gives x, y imaginary. Therefore the only
sensible solutions to the problem are

x = y =

√
2
3
, x = y = −

√
2
3
.

and substituting them into the square distance f(x, y) we see that they give us the
same distance

d =

√
f(±

√
2
3
,±

√
2
3
) =

√
4
3
.

Therefore there are two points contained in the curve (0.1) which are both at the same
distance from (0, 0, 0) and this is also the shortest distance.
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3. To obtain the general solution of the homogeneous equation we try solutions of the
type y = cemx. Substituting this solution into the equation we obtain the condition

m2 − 1 = 0 ⇒ m = ±1.

This means that the general solution of the homogeneous equation is of the form

y = c1e
x + c2e

−x,

therefore we identify
u1(x) = ex, u2(x) = e−x.

For the second part of the problem we will need the Wronskian of these solutions which
is

W (x) =
∣∣∣∣

u1(x) u2(x)
u′1(x) u′2(x)

∣∣∣∣ =
∣∣∣∣

ex e−x

ex −e−x

∣∣∣∣ = −1− 1 = −2.

The method of variation of parameters tells us that a particular solution of the inho-
mogeneous equation is of the form

y = v1(x)u1(x) + v2(x)u2(x),

with
v1(x) = −

∫
u2(x)

R(x)
W (x)

dx and v2(x) =
∫

u1(x)
R(x)
W (x)

dx.

In our case
R(x) =

2
e−x + ex

, W (x) = −2,

therefore

v1(x) =
∫

e−x

e−x + ex
dx =

∫
dx

1 + e2x
=

∫
e−2x

1 + e−2x
dx = −1

2
ln |1 + e−2x|.

v2(x) = −
∫

ex

e−x + ex
dx = −

∫
dx

1 + e−2x
= −

∫
e2x

1 + e2x
dx = −1

2
ln |1 + e2x|.

Hence the general solution of the inhomogeneous equation is

y = c1e
x + c2e

−x − ex

2
ln |1 + e−2x| − e−x

2
ln |1 + e2x|.

with c1, c2 being arbitrary constants.

4. (a) Here we can use the chain rule

df

dt
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
,
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for a function of two variables f(x, y) under a change of coordinates which relates the
original variables x, y to a single variable t. In this particular case we can compute
dx

dt
= − sin(t),

dy

dt
= 2 cos(t),

∂f

∂x
= −2xe−(x2+y2) and

∂f

∂y
= −2ye−(x2+y2),

and therefore
df

dt
= 2 sin(t)xe−(x2+y2) − 4 cos(t)ye−(x2+y2) = 2e−(x2+y2) (sin(t)x− 2 cos(t)y) .

The problem tells us to express df/dt in terms of t, so to finish the problem we have
to substitute all the x and y in terms of t in the previous formula
df

dt
= 2e−(cos2(t)+4 sin2(t)) (sin(t) cos(t)− 4 cos(t) sin(t)) = −6 sin(t) cos(t)e−(1+3 sin2(t)),

were we used sin2(t) + cos2(t) = 1.

An alternative (and shorter) way of doing the problem is to substitute x = cos(t) and
y = 2 sin(t) directly into the function f(x, y). That gives us

f(x(t), y(t)) = e−(1+3 sin2(t)),

and then do the derivative
df

dt
= −6 sin(t) cos(t)e−(1+3 sin2(t)).

(b) Here we need to use the chain rule for a function of two variables x, y which are
changed to two new variables u, v. The relevant identities are

∂f

∂u
=

∂f

∂x

∂x

∂u
+

∂f

∂y

∂y

∂u
, (0.2)

∂f

∂v
=

∂f

∂x

∂x

∂v
+

∂f

∂y

∂y

∂v
. (0.3)

For x = (u2 − v2)/2 and y = uv we have

∂x

∂u
=

∂y

∂v
= u,

∂x

∂v
= −∂y

∂u
= −v.

Plugging these derivatives into (0.2)-(0.3) we obtain the formulae given in the problem.
The second order partial derivatives are obtained from these formulae as

∂2f

∂u2
=

∂

∂u
(ufx + vfy) = fx + u

∂fx

∂u
+ v

∂fy

∂u
= fx + u(ufxx + vfyx) + v(ufxy + vfyy) = fx + u2fxx + v2fyy + 2uvfxy,

∂2f

∂v2
=

∂

∂v
(−vfx + ufy) = −fx − v

∂fx

∂v
+ u

∂fy

∂v
= −fx − v(−vfxx + ufyx) + u(−vfxy + ufyy) = −fx + v2fxx + u2fyy − 2uvfxy,

and
∂2f

∂u2
+

∂2f

∂v2
= (u2 + v2)(fxx + fyy).

Therefore if fxx + fyy = 0, then automatically fuu + fvv = 0.

6


