
CALCULUS 1999: EXAM SOLUTIONS

1. (a) The integration region is the dashed area below. Notice that the curve y =
√

1− x2

can also be written as 1 = x2 + y2 which is the equation of a circle of radius 1.

In polar coordinates we have

x = r cos θ y = r sin θ,

and the element of surface is
dxdy = rdrdθ.

Looking at the integration region it is easy to see that in polar coordinates it corre-
sponds to

R := {(r, θ) | 0 ≤ θ ≤ π/2, 0 ≤ r ≤ 1}.
Finally, in polar coordinates, the function inside the integral becomes

e−(x2+y2) = e−r2
.

So the integral is

I =
∫ θ=π/2

θ=0
dθ

∫ r=1

r=0
re−r2

dr.

The integral in r is simply
∫ r=1

r=0
re−r2

dr = −1
2

[
e−r2

]1

0
=

1− e−1

2
=

e− 1
2e

.

Therefore

I =
e− 1
2e

∫ θ=π/2

θ=0
dθ =

e− 1
2e

[θ]π/2
0 =

π(e− 1)
4e

.

(b) As usual we start by sketching the integration region
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From the picture and the information given by the problem we can deduce that the
integration region is

R = {(x, y, z) : 0 ≤ x ≤ 1, 4x2 ≤ y ≤ 4, 0 ≤ z ≤ 2.}

The integral is

I = 2
∫ x=1

x=0
xdx

∫ 4

y=4x2

dy

∫ 2

z=0
dz.

The integral in z is ∫ 2

z=0
dz = [z]20 = 2.

The integral in y is ∫ 4

y=4x2

dy = [y]44x2 = 4(1− x2).

Therefore, the final result is

I = 16
∫ x=1

x=0
x(1− x2)dx = 16

[
x2

2
− x4

4

]1

0

= 16
(

1
2
− 1

4

)
= 4.

2. (a) For this function the first order partial derivatives are

fx = 3x2 + y2 − 24x + 21,

fy = 2xy − 4y.

The first thing we have to do is finding the points at which these derivatives vanish

fy = 0 ⇒ y(x− 2) = 0 ⇒ y = 0 or x = 2.
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For y = 0 (which is one of the solutions of the previous equation) fx will vanish if

fx(x, y = 0) = 0 = 3x2 − 24x + 21 = 0 ⇒ x =
24± 18

6
= 7, 1,

and for x = 2 (which is the other solution of fy = 0) we would obtain

fx(x = 2, y) = 0 = 12 + y2 − 48 + 21 ⇒ y = ±
√

15.

Therefore, putting all these solutions together we have the following 4 points:

(x, y) = (1, 0), (7, 0), (2,
√

15) and (2,−
√

15).

The next step is to compute the second order partial derivatives

A = fxx = 6x− 24,

B = fxy = fyx = 2y,

C = fyy = 2x− 4,

therefore
AC −B2 = (6x− 24)(2x− 4)− 4y2,

and we have to study the sign of this quantity in order to classify the stationary points
of the function:

The point (1, 0): At this point

AC −B2 = (6− 24)(2− 4) = 36 > 0,

A = 6− 24 = −18 < 0,

therefore this point is a maximum.

The point (7, 0): At this point

AC −B2 = (42− 24)(14− 4) = 180 > 0,

A = 42− 24 = 18 > 0,

therefore this point is a minimum.

The point (2,
√

15): At this point

AC −B2 = (12− 24)(4− 4)− 60 = −60 < 0,

therefore this point is a saddle point.

The point (2,−√15): At this point

AC −B2 = (12− 24)(4− 4)− 60 = −60 < 0,

therefore this point is also a saddle point.
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(b) The Taylor expansion of a function of two variables f(x, y) around a point (x0, y0)
up to second order terms is given by

f(x, y) = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)

+
1
2
fxx(x0, y0)(x− x0)2 +

1
2
fyy(x0, y0)(y − y0)2 + fxy(x0, y0)(x− x0)(y − y0),

assuming fxy = fyx. In our case (x0, y0) = (−1,−1) and

fx = (1 + x + y)ex−y, fy = (1− x− y)ex−y, fxx = (2 + x + y)ex−y,

fyy = (−2 + x + y)ex−y, fxy = fyx = −(x + y)ex−y.

Therefore

fx(−1,−1) = −1, fy(−1,−1) = 3, fxx(−1,−1) = 0,

fyy(−1,−1) = −4, fxy(−1,−1) = fyx(−1,−1) = 2,

and f(−1,−1) = −2. With this we obtain the following Taylor expansion

f(x, y) = −2− (x + 1) + 3(y + 1)− 2(y + 1)2 + 2(y + 1)(x + 1)
= y + x− 2y2 + 2xy.

Therefore, the approximate value of f(−0.9,−1.05) is

f(−0.9,−1.05) ' −0.9− 1.05− 2(1.05)2 + 2(0.9)(1.05) = −2.265.

The Taylor expansion in terms of the displacements h and k is obtained simply by
replacing x = x0 + h = h− 1 and y = y0 + k = k − 1 in our final formula. It gives

f(h, k) = k + h− 2− 2(k − 1)2 + 2(k − 1)(h− 1).

3. To obtain the general solution of the homogeneous equation we try solutions of the
type y = cemx. Substituting this solution into the equation we obtain the condition

m2 + 1 = 0 ⇒ m = ±i.

This means that the general solution of the homogeneous equation is of the form

y = c1 sin(x) + c2 cos(x),

therefore we identify
u1(x) = sin(x), u2(x) = cos(x).

For the second part of the problem we will need the Wronskian of these solutions which
is

W (x) =
∣∣∣∣

u1(x) u2(x)
u′1(x) u′2(x)

∣∣∣∣ =
∣∣∣∣

sin(x) cos(x)
cos(x) − sin(x)

∣∣∣∣ = − sin2(x)− cos2(x) = −1.
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Therefore the Wronskian is indeed nowhere zero.

The method of variation of parameters tells us that a particular solution of the inho-
mogeneous equation is of the form

y = v1(x)u1(x) + v2(x)u2(x),

with
v1(x) = −

∫
u2(x)

R(x)
W (x)

dx and v2(x) =
∫

u1(x)
R(x)
W (x)

dx.

In our case
R(x) = x +

1
cosx

, W (x) = −1,

therefore

v1(x) =
∫

(x cosx + 1)dx = x +
∫

x cosxdx = x + x sinx−
∫

sinxdx = x + x sinx + cos x.

v2(x) = −
∫

(x sinx + tanx)dx = ln | cosx| −
∫

x sinxdx = ln | cosx|+ x cosx−
∫

cosxdx

= ln | cosx|+ x cosx− sinx,

where for both integrals we have used integration by parts. Hence the general solution
of the inhomogeneous equation is

y = c1 sinx + c2 cos(x) + sinx(x + x sinx + cosx) + cosx(ln | cosx|+ x cosx− sinx)
= c1 sinx + c2 cosx + x(1 + sinx) + cosx ln | cosx|.

with c1, c2 being arbitrary constants.

4. Here we need to use the chain rule for a function of two variables x, y which are changed
to two new variables u, v. The relevant identities are

∂f

∂u
=

∂f

∂x

∂x

∂u
+

∂f

∂y

∂y

∂u
, (0.1)

∂f

∂v
=

∂f

∂x

∂x

∂v
+

∂f

∂y

∂y

∂v
. (0.2)

For x = (u + v)/2 and y = (u2 + v2)/4 we have

∂x

∂u
=

∂x

∂v
=

1
2
,

∂y

∂u
=

u

2
,

∂y

∂v
=

v

2
.

Plugging these derivatives into (0.1)-(0.2) we obtain

∂f

∂u
=

1
2
fx +

u

2
fy,

∂f

∂v
=

1
2
fx +

v

2
fy.
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therefore

∂f

∂u
+

∂f

∂v
=

1
2
fx +

u

2
fy +

1
2
fx +

v

2
fy = fx +

u + v

2
fy = fx + xfy,

as we wanted to prove. To prove the second identity we need to compute second order
partial derivatives

∂2f

∂u2
=

1
2

∂

∂u
(fx + ufy) =

1
2

∂fx

∂u
+

1
2
fy +

u

2
∂fy

∂u

=
1
4
(fxx + ufyx) +

1
2
fy +

u

4
(fxy + ufyy),

∂2f

∂v2
=

1
2

∂

∂v
(fx + vfy) =

1
2

∂fx

∂v
+

1
2
fy +

v

2
∂fy

∂v

=
1
4
(fxx + vfyx) +

1
2
fy +

v

4
(fxy + vfyy).

Therefore

∂2f

∂u2
+

∂2f

∂v2
=

1
4
(fxx + ufyx) +

1
2
fy +

u

4
(fxy + ufyy) +

1
4
(fxx + vfyx) +

1
2
fy +

v

4
(fxy + vfyy)

=
1
2
fxx +

u + v

2
fxy +

u2 + v2

4
fyy + fy

=
1
2
fxx + xfxy + yfyy + fy,

as we wanted to prove.

(b) Let us consider an implicit function of two variables z = f(x, y) and assume the
existence of a constraint

F (x, y, z) = 0,

which relates the function z to the two independent variables x and y. Since F = 0 it is
clear that also its total differential dF = 0 must vanish. However the total differential
is by definition

dF =
(

∂F

∂x

)
dx +

(
∂F

∂y

)
dy +

(
∂F

∂z

)
dz = 0, (0.3)

and in addition, z is a function of x and y, therefore its differential is given by

dz =
(

∂z

∂x

)
dx +

(
∂z

∂y

)
dy. (0.4)

If we substitute (0.4) into (0.3) we obtain the equation

dF = 0 =
(

∂F

∂x
+

∂F

∂z

∂z

∂x

)
dx +

(
∂F

∂y
+

∂F

∂z

∂z

∂y

)
dy. (0.5)

Since x and y are independent variables, equation (0.5) implies that each of the factors
has to vanish separately, that is

∂F

∂x
+

∂F

∂z

∂z

∂x
=

∂F

∂y
+

∂F

∂z

∂z

∂y
= 0.
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Therefore we obtain,

∂z

∂x
= −

(
∂F

∂x

)

(
∂F

∂z

) = −Fx

Fz
,

∂z

∂y
= −

(
∂F

∂y

)

(
∂F

∂z

) = −Fy

Fz
.

Employing now these formulae for the function F (x, y, z) = cos(x+y)+sin(y +z) = 0,
we obtain

∂z

∂x
= −Fx

Fz
=

sin(x + y)
cos(y + z)

,

and
∂z

∂y
= −Fy

Fz
= −− sin(x + y) + cos(y + z)

cos(y + z)
=

sin(x + y)
cos(y + z)

− 1.
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