CALCULUS 2003: EXAM SOLUTIONS

1. (a) The integration region is the triangle formed by the intersection of the lines z = y,
y =0 and x = 1. Changing the order of integration we obtain the integral
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Plugging this result into the second integral we obtain

The integral in y gives
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(b) As usual we start by sketching the integration region

. l;TzI
2,

From the picture and the information given by the problem we can deduce that the
integration region is

R={(z,y,2):0<z<1, 42?<y<4, 0<2z<2]}
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The integral is

The integral in z is



The integral in y is

Therefore, the final result is
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. (a) The first order partial derivatives are
fo = 3a2+y%— 24+ 21,
fy = 2y —4y.
The first thing we have to do is finding the points at which these derivatives vanish
y=0 = ylx—-2)=0 =y=0 or z=2.

For y = 0 (which is one of the solutions of the previous equation) f, will vanish if

24+18

felz,y=0)=0=32> 242 +21=0 = = = c

7,1,
and for z = 2 (which is the other solution of f, = 0) we would obtain
folz=2,9)=0=124+19?—48+21 = y==+V15.
Therefore, putting all these solutions together we have the following 4 points:
(z,y) = (1,0), (7,0), (2,v15) and (2,—V15).
The next step is to compute the second order partial derivatives

A = fur=06x—24,

B fmy:fymZQ%
C fyy = 22 — 4,

therefore
AC — B? = (6z — 24)(2z — 4) — 49/,

and we have to study the sign of this quantity in order to classify the stationary points
of the function:

The point (1,0): At this point

AC — B? (6 —24)(2 —4) =36 >0,
A = 6-24=-18<0,

therefore this point is a maximum.



The point (7,0): At this point

AC — B* = (42—24)(14 —4) =180 > 0,
A = 42-24=18>0,

therefore this point is a minimum.

The point (2,1/15): At this point
AC — B? = (12 — 24)(4 — 4) — 60 = —60 < 0,

therefore this point is a saddle point.
The point (2, —+/15): At this point

AC — B? = (12 — 24)(4 — 4) — 60 = —60 < 0,

therefore this point is also a saddle point.

(b) The Taylor expansion of a function of two variables f(x,y) around a point (xq, yo)
up to second order terms is given by

flz,y) = f(zo,y0) + fa(z0,y0)(x — 20) + fy(20,Y0) (¥ — Yo)

+ %fm(l’o,yo)(@“ —x0)% + %fyy(an Y0) (Y — ¥0)* + Fay (20, Y0) (2 — 20) (Y — Y0),

assuming fry = fyz. In our case (zg,40) = (—1,—1) and

fo = Atx+ye™, fy=0-2-y)e"Y, fuo=Q2+z+y)e "
fyy = (_2+x+y)ewiy7 fxy = fya: = _(x"i_y)exiy'
Therefore

fl«(fl,fl) = -1, fy(fl, fl) =3, fxx(fl, fl) =0,
fyy(_l’_l) = —4, fﬂﬁy(_L_l) = fyu’v(_lv _1) =2,

and f(—1,—1) = —2. With this we obtain the following Taylor expansion

flr,y) = —2—(z+1)+3@y+1)—2y+1)%+2y+1)(z+1)
= y+$—2y2—|—2xy.

Therefore, the approximate value of f(—0.9, —1.05) is
F(=0.9, -1.05) ~ —0.9 — 1.05 — 2(1.05)% + 2(0.9)(1.05) = —2.265.

The Taylor expansion in terms of the displacements h and k is obtained simply by
replacing x =x9p+h=h —1and y = yo + k = k — 1 in our final formula. It gives

fhk)=k+h—-2—-2k—-1%+2k—-1)(h—1).



3. To obtain the general solution of the homogeneous equation we try solutions of the
type y = ce™*. Substituting this solution into the equation we obtain the condition

m>—1=0=m==+1.

This means that the general solution of the homogeneous equation is of the form

_ x —x
Yy =cre” +coe 7,

therefore we identify

ui(z) = e, ug(z) = e "

For the second part of the problem we will need the Wronskian of these solutions which
is

ui(z) ug(x) ‘
uy(z)  us(x)

Therefore the Wronskian is indeed nowhere zero.

The method of variation of parameters tells us that a particular solution of the inho-
mogeneous equation is of the form

y = vi(z)ur(x) + vo(w)uz(z),

with

In our case

therefore
1 e ® 1 1 1 1 1
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= —— = — —_— |dz = — - — 1-— d
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= —— ——+-In|1+¢€"
5 2—i-2n| +e”|
1 e’ 1
vo(z) = —2/1+6xd:z:—21n|1+em\.

Hence the general solution of the inhomogeneous equation is

y = c1e¥ +ce P +e” —ﬁ—£+lln|1+6x| —e_$11n|1+e‘v|.
2 2 2 2

with c¢1, co being arbitrary constants.



4. (a) Here we simply have to use the chain rule

of _ 0fox  0f oy

% = 915 8y8r:cosﬁfm+sin9fy,

and

of _ 0f0x 0fdy_
% = 8m69+8y89_ rsinff, +rcosff,.

In order to prove the identity we just need to compute employing the formulae above

for f=V

1 . 1 .
V2 + T—QVQ2 = (cosOV, +sin0V,)? + ﬁ(—r sin OV, + rcosOV,)? = V2 + Vyz.
(b) Let us consider an implicit function of two variables z = f(z,y) and assume the
existence of a constraint

F(x? y? Z) = 07

which relates the function z to the two independent variables x and y. Since F' = 0 it is
clear that also its total differential df" = 0 must vanish. However the total differential
is by definition

oF oF OF
dF = — | d — | d — | dz = 1
(5) o+ (55) o+ (52) =0 o
and in addition, z is a function of x and y, therefore its differential is given by
0z 0z
dz=|——|d — | dy. 2
= () e (5) 0 0
If we substitute (0.2) into (0.1) we obtain the equation
OF OF 0z OF OF 0z
dF =0=|—+——|d — 4+ —— | dy. .
0 (8x+828x> x+<8y+825y> Y (03)

Since x and y are independent variables, equation (0.3) implies that each of the factors
has to vanish separately, that is

OF 9F0: OF 9F9:

9z 9200 oy " 920y

8£
0z ox

=0.

Therefore we obtain,




Employing now these formulae for the function F'(z,y, 2) = z tanz — 2y%2% — 2zyz = 0,
we obtain

0z Fy v - 2uz
dr  F.  tanz — 3zy222 — 22y’
and
0z  F, 2y + 21z
dy  F. tanz — 3zy22% —2zy’



