
CALCULUS 2005: EXAM SOLUTIONS

1. (a) The integration region is the triangle formed by the intersection of the lines y = x,
y = 0 and x = 1. Once we have identified the integration region, it is easy to change
the order of integration to write I equivalently as

I =
∫ x=1

x=0
dx

∫ y=x

y=0
cos

(
πx2

2

)
dy.

The integral
∫ y=x

y=0
cos

(
πx2

2

)
dy =

[
y cos

(
πx2

2

)]x

0

= x cos
(

πx2

2

)
− 0 = x cos

(
πx2

2

)
,

is trivial to do, since the argument does not depend on y. Now the second integral
is also very easy to do, since we have the product of the cosine of a function and the
derivative of that function, therefore

I =
∫ x=1

x=0
x cos

(
πx2

2

)
dx =

[
1
π

sin
(

πx2

2

)]1

0

=
1
π
− 0 =

1
π

.

If you do not realize how to do the integral directly, you can also change variables to
t = πx2/2 which gives dt = πxdx and allows you to rewrite the integral above as

I =
∫ x=1

x=0
x cos

(
πx2

2

)
dx =

1
π

∫ t=π/2

t=0
cos(t) dt =

1
π

[sin(t)]π/2
0 =

1
π

.

(b) These are the cylindrical coordinates we have studied in the course. The Jacobian
is the determinant of the following matrix

J =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x

∂r

∂x

∂θ

∂x

∂z

∂y

∂r

∂y

∂θ

∂y

∂z

∂z

∂r

∂z

∂θ

∂z

∂z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣

cos θ −r sin θ 0
sin θ r cos θ 0

0 0 1

∣∣∣∣∣∣
= r cos2 θ + r sin2 θ = r.

Therefore, the element of volume which we need to use for the integral is

dx dy dz = |J | dr dθ dz = r dr dθ dz.

We will need to use this element of volume for the next part of the exercise. Here
they ask us to compute the mass of a solid and they tell us that its density is the
function (x2 + y2)z. Since the density is mass per unit of volume, what the problem is
asking us is to integrate the density function in the volume bounded by the cone and
the cylinder, whose equations are given in the problem. In cylindrical coordinates the
density is just

(x2 + y2)z = r2z,
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and the equations of the cone and the cylinder become

z2 = r2, z ≥ 0,

and
r2 = a2,

respectively. Since r is always positive (it is a distance!) the equations above are
equivalent to:

z = r and r = a.

Therefore, the integration region is the dashed volume as sketched in the figure below,

and corresponds to

R = {(r, θ, z) | z ≤ r ≤ a, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ a}.
Therefore, we have to do the integral

m =
∫ z=a

z=0

∫ r=a

r=z

∫ θ=2π

θ=0
r3zdr dz dθ.

Notice that the r3 in the integral comes from the factor r2 of the density function and
the factor r in the Jacobian. The first integral is simply

∫ θ=2π

θ=0
r3zdθ = 2πr3z.

Plugging that back into the r-integral we obtain
∫ r=a

r=z
2πr3zdr =

[
2πz

r4

4

]r=a

r=z

=
π

2
z(a4 − z4).
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We can now finally compute the mass by carrying out the last integral in z

m =
∫ z=a

z=0

π

2
z(a4−z4)dz =

π

2

[
a4 z2

2
− z6

6

]z=a

z=0

=
π

2

(
a4 a2

2
− a6

6

)
−0 =

πa6

2

(
1
2
− 1

6

)
=

πa6

6
.

2. (a) Here we can use the chain rule

df

dt
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
,

for a function of two variables f(x, y) under a change of coordinates which relates the
original variables x, y to a single variable t. In this particular case we can compute

dx

dt
= − sin(t),

dy

dt
= 2 cos(t),

∂f

∂x
= −2xe−(x2+y2) and

∂f

∂y
= −2ye−(x2+y2),

and therefore

df

dt
= 2 sin(t)xe−(x2+y2) − 4 cos(t)ye−(x2+y2) = 2e−(x2+y2) (sin(t)x− 2 cos(t)y) .

The problem tells us to express df/dt in terms of t, so to finish the problem we have
to substitute all the x and y in terms of t in the previous formula

df

dt
= 2e−(cos2(t)+4 sin2(t)) (sin(t) cos(t)− 4 cos(t) sin(t)) = −6 sin(t) cos(t)e−(1+3 sin2(t)),

were we used sin2(t) + cos2(t) = 1.

An alternative (and shorter) way of doing the problem is to substitute x = cos(t) and
y = 2 sin(t) directly into the function f(x, y). That gives us

f(x(t), y(t)) = e−(1+3 sin2(t)),

and then do the derivative

df

dt
= −6 sin(t) cos(t)e−(1+3 sin2(t)).

(b) Here we need to use the chain rule for a function of two variables x, y which are
changed to two new variables u, v. The relevant identities are

∂f

∂u
=

∂f

∂x

∂x

∂u
+

∂f

∂y

∂y

∂u
, (0.1)

∂f

∂v
=

∂f

∂x

∂x

∂v
+

∂f

∂y

∂y

∂v
. (0.2)

It is easy to realize that the problem is wrongly formulated, as it is not possible
to obtain

∂f

∂u
= u

∂f

∂x
+ v

∂f

∂y
, (0.3)

∂f

∂v
= −v

∂f

∂x
+ u

∂f

∂y
, (0.4)
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from the relations x = (u + v)/2 and y = (u2 + v2)/4. In order to obtain (0.3)-(0.4)
the correct transformation of coordinates is

x =
u2 − v2

2
, y = uv,

which implies
∂x

∂u
=

∂y

∂v
= u,

∂x

∂v
= −∂y

∂u
= −v.

Plugging these derivatives into (0.1)-(0.2) we obtain (0.3)-(0.4). The second order
partial derivatives are obtained from (0.3)-(0.4) as

∂2f

∂u2
=

∂

∂u
(ufx + vfy) = fx + u

∂fx

∂u
+ v

∂fy

∂u
= fx + u(ufxx + vfyx) + v(ufxy + vfyy) = fx + u2fxx + v2fyy + 2uvfxy,

∂2f

∂v2
=

∂

∂v
(−vfx + ufy) = −fx − v

∂fx

∂v
+ u

∂fy

∂v
= −fx − v(−vfxx + ufyx) + u(−vfxy + ufyy) = −fx + v2fxx + u2fyy − 2uvfxy,

and
∂2f

∂u2
+

∂2f

∂v2
= (u2 + v2)(fxx + fyy).

Therefore if fxx + fyy = 0, then automatically fuu + fvv = 0.

3. To obtain the general solution of the homogeneous equation we try solutions of the
type y = cemx. Substituting this solution into the equation we obtain the condition

m2 − 4m + 5 = 0 ⇒ m = 2± i.

This means that the general solution of the homogeneous equation is of the form

y = c1e
2x cosx + c2e

2x sinx,

therefore we identify

u1(x) = e2x cosx, u2(x) = e2x sinx.

For the second part of the problem we will need the Wronskian of these solutions which
is

W (x) =
∣∣∣∣

u1(x) u2(x)
u′1(x) u′2(x)

∣∣∣∣ =
∣∣∣∣

e2x cosx e2x sinx
2e2x cosx− e2x sinx 2e2x sinx + e2x cosx

∣∣∣∣
= e4x cosx(2 sinx + cos x)− e4x sinx(2 cosx− sinx) = e4x.

Therefore the Wronskian is indeed nowhere zero for finite values of x.

The method of variation of parameters tells us that a particular solution of the inho-
mogeneous equation is of the form

y = v1(x)u1(x) + v2(x)u2(x),
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with
v1(x) = −

∫
u2(x)

R(x)
W (x)

dx and v2(x) =
∫

u1(x)
R(x)
W (x)

dx.

In our case

R(x) =
e2x

sinx
, W (x) = e4x,

therefore

v1(x) = −
∫

dx = −x,

v2(x) =
∫

cosx

sinx
dx = ln | sinx|.

Hence the general solution of the inhomogeneous equation is

y = e2x(c1 cosx + c2 sinx− x cosx + ln | sinx| sinx),

with c1, c2 being arbitrary constants.

4. (a) The Taylor expansion of a function of two variables f(x, y) around a point (x0, y0)
up to second order terms is given by

f(x, y) = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)

+
1
2
fxx(x0, y0)(x− x0)2 +

1
2
fyy(x0, y0)(y − y0)2 + fxy(x0, y0)(x− x0)(y − y0).

First we need to compute the 1st and 2nd order partial derivatives

fx = 2e2x+3y
(
8x + 8x2 − 3y − 6xy + 3y2

)
,

fy = 3e2x+3y
(−2x + 8x2 + 2y − 6xy + 3y2

)
,

fxx = 4e2x+3y
(
4 + 16x + 8x2 − 6y − 6xy + 3y2

)
,

fyy = 3e2x+3y
(
2− 12x + 24x2 + 12y − 18xy + 9y2

)
,

fxy = fyx = 6e2x+3y
(−1 + 6x + 8x2 − y − 6xy + 3y2

)
.

Therefore

fx(0, 0) = 0, fy(0, 0) = 0, fxx(0, 0) = 16,
fyy(0, 0) = 6, fxy(0, 0) = fyx(0, 0) = −6,

and f(0, 0) = 0. With this we obtain the following Taylor expansion

f(x, y) = 8x2 + 3y2 − 6xy.

To obtain the expansion in terms of the displacements h and k we only need to set
x = x0 + h and y = y0 + k. Since in this case x0 = y0 = 0,

f(h, k) = 8h2 + 3k2 − 6hk.
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The problem also asks what we can conclude about the nature of the point (0, 0).
Since both first order derivatives vanish at that point we know that it must be either a
maximum, a minimum or a saddle point. To know which one it is we need to compute:

fxx(0, 0)fyy(0, 0)− fxy(0, 0)2 = (16)(6)− 62 = 60 > 0.

Since fxx(0, 0) = 16 > 0 the point is in fact a minimum of the function.

(b) In this case our constraint is

φ(x, y, z) = x3 + y3 + z3 − 1 = 0, (0.5)

and the corresponding partial derivatives of f and φ are

fx = zy, fy = xz, fz = xy,

φx = 3x2, φy = 3y2, φz = 3z2.

Therefore we need to solve the following system of equations

x3 + y3 + z3 − 1 = 0,
zy + λ3x2 = 0,

zx + λ3y2 = 0,

xy + λ3z2 = 0.

The last three equations are solved by x = y = z and λ = −1/3, which when plugged
into the first equation gives the condition

3x3 = 1 ⇒ x = 3

√
1
3
.

In addition, the equations admit also the solutions (0, 0, 1), (1, 0, 0) and (0, 1, 0) with
λ = 0. At these points f = 0 and this is the minimum value of this function for points
satisfying (0.5) and x, y, z ≥ 0. The maximum value of f subject to (0.5) is therefore
1/3.
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