
CALCULUS 2006: EXAM SOLUTIONS

1. (a) The integration region is the lower triangle in the picture 3

From the picture it is easy to see that changing the order of integration we obtain 3

I =
∫ x=1

x=0
dx

∫ y=2x

y=0
cos(x2)dy.

The integral in y gives 2
∫ y=2x

y=0
cos(x2)dy =

[
y cos(x2)

]2x

0
= 2x cos(x2).

Plugging this result into the second integral we obtain 2

I =
∫ x=1

x=0
2x cos(x2)dx =

[
sin(x2)

]1

0
= sin(1).

(b) The Jacobian of the change of coordinates is simply 2

J =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x

∂r

∂x

∂θ

∂x

∂z

∂y

∂r

∂y

∂θ

∂y

∂z

∂z

∂r

∂z

∂θ

∂z

∂z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣

cos θ −r sin θ 0
sin θ r cos θ 0

0 0 1

∣∣∣∣∣∣
= r cos2 θ + r sin2 θ = r.

Therefore, the element of volume which we need to use for the integral is 1

dx dy dz = |J | dr dθ dz = r dr dθ dz.

To compute the integral we have first to express the integrand in terms of the new
variables, that is 1

(x2 + y2)2 = (r2)2 = r4.
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The next step is to describe the region of integration in terms of the new variables.
The integration region for this problem is very easy to sketch. We have a radius 1
circular cylinder centered at the origin extending between the z = 1 and z = 5 planes.
This looks more or less like in the picture below

In cylindrical coordinates, the integration region is simply 2

R = {(r, z, θ) : 0 ≤ r ≤ 1, 1 ≤ z ≤ 5, 0 ≤ θ ≤ 2π},

and the integral we want to compute is therefore 1

V =
∫ r=1

r=0
r5dr

∫ θ=2π

θ=0
dθ

∫ z=5

z=1
dz.

The various integrals can be carried out separately and give 2

∫ r=1

r=0
r5dr =

[
r6

6

]1

0

=
1
6
,

∫ θ=2π

θ=0
dθ = 2π,

∫ z=5

z=1
dz = 5− 1 = 4.

Therefore 1
V = (2π)(1/6)(4) =

4π

3
.

2. (a) First of all we need to find the points at which the first order partial derivatives
vanish. These derivatives are 2

fx = (1− 2x2)e−x2+y2
, fy = 2xye−x2+y2

.

Then 1
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fx = 0 ⇔ x = ± 1√
2
,

and 1
fy = 0 ⇔ x = 0 or y = 0.

That gives us 2 candidates to be stationary points, that is the points (±1/
√

2, 0) at
which both fx and fy vanish. To investigate what type of stationary points this points
are, we have to look at the second order partial derivatives: 2

fxx = 2x(−3 + 2x2)e−x2+y2
, fyy = 2x(1 + 2y2)e−x2+y2

,

fxy = fyx = 2y(1− 2x2)e−x2+y2
.

Calling A = fxx, B = fxy and C = fyy, we find:

i) For the point (1/
√

2, 0) we have 2

A = −2

√
2
e
, B = 0, C =

√
2
e
.

Then
AC −B2 = −4

e
< 0,

therefore this point is a saddle point.

ii) For the point (−1/
√

2, 0) we have 2

A = 2

√
2
e
, B = 0, C = −

√
2
e
.

Then
AC −B2 = −4

e
< 0,

therefore this point is also a saddle point.

(b) The Taylor expansion of a function of two variables f(x, y) around a point (x0, y0)
up to second order terms is given by 2

f(x, y) = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)

+
1
2
fxx(x0, y0)(x− x0)2 +

1
2
fyy(x0, y0)(y − y0)2 + fxy(x0, y0)(x− x0)(y − y0),

assuming fxy = fyx. In our case (x0, y0) = (0, 1) and 2

fx = 2x + y, fy = 3y2 + x, fxx = 2, fyy = 6y, fxy = fyx = 1.

Therefore 2

f(0, 1) = 1, fx(0, 1) = 1, fy(0, 1) = 3, fxx(0, 1) = 2, fyy(0, 1) = 6, fxy(0, 1) = fyx(0, 1) = 1.

So, the Taylor expansion is 2
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f(x, y) = 1 + x + 3(y − 1) + x2 + 3(y − 1)2 + x(y − 1),
= 1 + x2 + xy + 3y(y − 1),

and 2

f(0.1, 1.1) = 1 + (0.1)2 + (0.1)(1.1) + 3(1.1)(0.1) = 1 + 0.01 + 0.44 = 1.45.

The exact value of the function at this point is

f(0.1, 1.1) = (0.1)2 + (0.1)(1.1) + (1.1)3 = 1.451,

therefore the Taylor approximation is in fact very good for this point!

3. (a) Using the chain rule we have 4

∂f

∂u
=

∂f

∂x

∂x

∂u
+

∂f

∂y

∂y

∂u
= eu+vfx + eu−vfy,

and 4

∂f

∂v
=

∂f

∂x

∂x

∂v
+

∂f

∂y

∂y

∂v
= eu+vfx − eu−vfy.

(b) From (a) we can obtain the 2nd order partial derivatives by using once more the
chain rule we have 5

∂2f

∂u2
=

∂

∂u
(eu+vfx + eu−vfy) = eu+vfx + eu+v ∂fx

∂u
+ eu−vfy + eu−v ∂fy

∂u
= eu+vfx + eu−vfy + eu+v(eu+vfxx + eu−vfyx) + eu−v(eu+vfxy + eu−vfyy)

= eu+vfx + eu−vfy + e2(u+v)fxx + e2(u−v)fyy + e2u(fxy + fyx),

and 5

∂2f

∂v2
=

∂

∂v
(eu+vfx − eu−vfy) = eu+vfx + eu+v ∂fx

∂v
+ eu−vfy − eu−v ∂fy

∂v
= eu+vfx + eu−vfy + eu+v(eu+vfxx − eu−vfyx)− eu−v(eu+vfxy − eu−vfyy)

= eu+vfx + eu−vfy + e2(u+v)fxx + e2(u−v)fyy − e2u(fxy + fyx).

Substracting the two formulae we trivially see that 2

∂2f

∂u2
− ∂2f

∂v2
= 2e2u

(
∂2f

∂x∂y
+

∂2f

∂y∂x

)
.

4. To obtain the general solution of the homogeneous equation we try solutions of the
type y = cemx. Substituting this solution into the equation we obtain the condition 2

m2 − 4 = 0 ⇒ m = ±2.

This means that the general solution of the homogeneous equation is of the form 2
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y = c1e
2x + c2e

−2x,

therefore we identify
u1(x) = e2x, u2(x) = e−2x.

For the second part of the problem we will need the Wronskian of these solutions which
is 3

W (x) =
∣∣∣∣

u1(x) u2(x)
u′1(x) u′2(x)

∣∣∣∣ =
∣∣∣∣

e2x e−2x

2e2x −2e−2x

∣∣∣∣ = −2− 2 = −4.

Therefore the Wronskian is indeed nowhere zero.

The method of variation of parameters tells us that a particular solution of the inho-
mogeneous equation is of the form 3

y = v1(x)u1(x) + v2(x)u2(x),

with
v1(x) = −

∫
u2(x)

R(x)
W (x)

dx and v2(x) =
∫

u1(x)
R(x)
W (x)

dx.

In our case
R(x) = cosh(2x), W (x) = −4,

therefore 4

v1(x) =
1
4

∫
e−2x cosh(2x)dx =

1
4

∫
e−2x(e2x + e−2x)

2
dx

=
1
8

∫
(e−4x + 1)dx =

1
8

(
−e−4x

4
+ x

)
.

4

v2(x) = −1
4

∫
e2x cosh(2x)dx = −1

4

∫
e2x(e2x + e−2x)

2
dx

= −1
8

∫
(e4x + 1)dx = −1

8

(
e4x

4
+ x

)
.

Hence the general solution of the inhomogeneous equation is 2

y = c1e
2x + c2e

−2x + e2x 1
8

(
−e−4x

4
+ x

)
− e−2x 1

8

(
e4x

4
+ x

)

= e2x

(
c1 +

x

8
− 1

32

)
+ e−2x

(
c2 − x

8
− 1

32

)

with c1, c2 being arbitrary constants.
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