CALCULUS 2006: EXAM SOLUTIONS

1. (a) The integration region is the lower triangle in the picture
Yy y =2x
y=2
R
X
x=1

From the picture it is easy to see that changing the order of integration we obtain

=1 y=2x
I:/ d:v/ cos(z?)dy.
z=0 y=0

The integral in y gives
y=2e 2x
/ cos(z?)dy = [y cos(xQ)]O = 2z cos(x?).
y=0

Plugging this result into the second integral we obtain

=1
I= / 21 cos(x?)dx = [Sin(zQ)](l) =sin(1).

=0
(b) The Jacobian of the change of coordinates is simply
or 00 0z
cosf —rsinf 0
J = oy 9y 9y =| sinf rcos® O |=rcos®f+rsin?0=r.
or 00 0z
0 0 1
or 00 0z
Therefore, the element of volume which we need to use for the integral is

dedydz = |J|drdfdz =rdrdfdz.

To compute the integral we have first to express the integrand in terms of the new
variables, that is
($2 + y2)2 — (T‘2)2 _ ,r_4.



The next step is to describe the region of integration in terms of the new variables.
The integration region for this problem is very easy to sketch. We have a radius 1
circular cylinder centered at the origin extending between the z = 1 and z = 5 planes.
This looks more or less like in the picture below

In cylindrical coordinates, the integration region is simply
R={(r,2,0):0<r<1, 1<2<5 0<60<2n},

and the integral we want to compute is therefore

r=1 0=2m 2=5
V= / rPdr / de / dz.
r=0 0=0 z=1

The various integrals can be carried out separately and give

r=1 1"6 1 0=27 z=5H
/ rodr = {} =, / df = 2, / dz=5—-1=4.
r=0 6 0 6 6=0 z=1

Therefore
47

V= (2m)1/6)4) = 5

. (a) First of all we need to find the points at which the first order partial derivatives
vanish. These derivatives are

fr=(1- 2:52)6_3:2"‘3’2, fy= Qxye_x2+y2.

Then



1
\/i ’
and

fy=0 & 2=0 or y=0.

fz=0 & z==+

That gives us 2 candidates to be stationary points, that is the points (+1//2,0) at
which both f, and f, vanish. To investigate what type of stationary points this points
are, we have to look at the second order partial derivatives:

f:m: = 21‘(—3 + 2x2)6_z2+y27 fyy = 2$(1 + 2y2)€—$2+y2,
Joy = fye = 2y(1 — 2:62)6_3”2‘“42.
Calling A = fiz, B = fzy and C = fy,, we find:
i) For the point (1/v/2,0) we have

A:—Q\F, B=0, C=/%
e e

AC—32:—§<0,
e

Then

therefore this point is a saddle point.
ii) For the point (—1/v/2,0) we have

P T i
€ (&

AC—32:—§<0,
e

Then

therefore this point is also a saddle point.

(b) The Taylor expansion of a function of two variables f(x,y) around a point (zg, yo)
up to second order terms is given by

flzy) = f(zo,y0) + fe(2o,y0) (2 — z0) + fy(20,Y0) (¥ — ¥o)
5 fenlw0,10) (2 = 20)? + 5 (20, 90)(y — w0)? + Foul0,30) (& — 20)(y — o),

assuming fy, = fyz- In our case (g, y0) = (0,1) and
fe=2z+y, [fy=3"+2 fw=2 [fu=0y fuy="Flp=1

Therefore

f0,1) =1, f(0,1) =1, £,(0,1)=3, fur(0,1) =2, f,(0,1) =6, fry(0,1) = f(0,1) = 1.

So, the Taylor expansion is



flzy) = 1+a+3y—1)+2>+3(y—1)>+z(y—1),
1+a2% +ay+3y(y — 1),

and
£(0.1,1.1) = 1+ (0.1)% + (0.1)(1.1) + 3(1.1)(0.1) = 1 4 0.01 + 0.44 = 1.45.
The exact value of the function at this point is
£(0.1,1.1) = (0.1)® + (0.1)(1.1) + (1.1)® = 1.451,
therefore the Taylor approximation is in fact very good for this point!

. (a) Using the chain rule we have

of _ 9f0x  0f0y _ utvp . u-v

ou 8x8u+8y8u_e Jo ke,
and

of _ 0f0x  Of0y _ vy _ u

ov 8x80+8y6v_e fom ey

(b) From (a) we can obtain the 2nd order partial derivatives by using once more the
chain rule we have

an a u+v u—v _ utv u+v uU—v uU—v afy
W = %(6 f$+€ fy)—@ f;];+€ +e fy"‘e %

— eu-l—vfx + eu—vfy + eu—&—v(eu—&—vfmx 4 eu_vfy:p) + eu—v(eu-‘rvfwy + eu—vfyy)
_ equvfx + eufvfy + 62(u+v)fa:w + 62(ufv)fyy + €2u(f:cy + fy:c)v

o1
ou

and
a2f 6 u+v f U—v £ u+v r u+v 6 fm u—v u—v 6 Jy
81}2 ov ( y) ov Y ov

— eu—i—vﬁD + eu—vfy + eu+v(€u+vf$z _ eu—vfyz) o eu—v(eu-‘rvfwy o eu—vfyy)

_ eu—i—vfx + eu—vfy + e2(u+v)f$x + 62(u—v)fyy _ €2u(fxy + fyx)
Substracting the two formulae we trivially see that

PO (01 0
ou? o2 0xdy Oydx )~

. To obtain the general solution of the homogeneous equation we try solutions of the
type y = ce™®. Substituting this solution into the equation we obtain the condition

m?—4=0=m==+2.

This means that the general solution of the homogeneous equation is of the form



y = c1e* 4 cpe 7,

therefore we identify

uy(z) = €22, us(z) = e 2.

For the second part of the problem we will need the Wronskian of these solutions which
is

9 ( :C) B 6295 e—2a:
L) || 2% —2e7%

Therefore the Wronskian is indeed nowhere zero.

=—-2-2=—4.
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The method of variation of parameters tells us that a particular solution of the inho-
mogeneous equation is of the form

y = vi(@)ur(x) + v2(z)uz(z),

with
vi(z) = —/UQ(a;)V};((?) dz and vo(x) = /U1(ai)£/((z)) de.
In our case
R(z) = cosh(2z), W(z) = —4,
therefore

1 1 —2x (2% —2x
vi(z) = 4/62xcosh(2x)d:c— 4/6 (e 2+6 )da:

L[, 4 L1 et
= /(e +1)d:n—8< 1 +x>.

8
€2x (62x 4 6—2$)

1
UQ(%) = _4/62xcosh(2x)d$_ —4/ 5 dx

1 " 1M

Hence the general solution of the inhomogeneous equation is

1 —4z 1 4z
y = ac e ey (—e + x) —e s (e + a:)

with ¢1, co being arbitrary constants.



