
CALCULUS 2010: EXAM SOLUTIONS

1. (a) [Seen with same integration region but different integrand] The integration region
is:

3 points

Reversing the order of integration we obtain

I =
∫ y=ln(3)

y=0
dy

∫ x=3

x=ey

(x + y)dx.

The x-integral gives 3 points
∫ x=3

x=ey

(x + y)dx =
[
x2

2
+ yx

]x=3

x=ey

=
9− e2y

2
+ 3y − yey.

Carrying out the final integral we obtain, 2 points

I =
1
2

∫ y=ln(3)

y=0
(9− e2y + 6y − 2yey)dy =

1
2

[
9y − e2y

2
+ 3y2

]y=ln(3)

y=0

−
∫ y=ln(3)

y=0
yeydy

︸ ︷︷ ︸
by parts once

=
1
2

(
9 ln(3)− e2 ln(3)

2
+

1
2

+ 3(ln(3))2
)
−

∫ y=ln(3)

y=0
yeydy

︸ ︷︷ ︸
by parts once

=
1
2
(9 ln(3)−4+3(ln(3))2)−

∫ y=ln(3)

y=0
yeydy

︸ ︷︷ ︸
by parts once

=
1
2
(9 ln(3)− 4 + 3(ln(3))2)− [yey]y=ln(3)

y=0 +
∫ y=ln(3)

y=0
eydy

=
1
2
(9 ln(3)− 4 + 3(ln(3))2)− 3 ln(3) + 2 =

3 ln(3)
2

(1 + ln(3)).

4 points
(b) [A very similar exercise was done as coursework] The picture of the three surfaces
involved is given below:
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From the picture (not required in the exam) and the information given by the problem,
it is clear that the variable z in the integration region takes values 0 ≤ z ≤ 3/4. Also,
it is easy to see that 0 ≤ θ ≤ 2π, since the ellipsoid is centred at the z axis (at z = 1).
The only variable for which the integration limits are not obvious is r. The values r can
take must be determined by the ellipsoid’s equation, which in cylindrical coordinates
takes the form:

4r2 + (z − 1)2 = 1 ⇒ r =
1
2

√
1− (z − 1)2.

Therefore 0 ≤ r ≤ 1
2

√
1− (z − 1)2. 2.5 points

The integral that we have to compute is:

V =
∫ θ=2π

θ=0
dθ

∫ z=3/4

z=0
dz

∫ 1/2
√

1−(z−1)2

r=0
rdr,

where we included the Jacobian J = r for cylindrical coordinates. The integral in r 2.5 points
is: ∫ 1/2

√
1−(z−1)2

r=0
rdr = [r2/2]

r=1/2
√

1−(z−1)2

r=0 =
1− (z − 1)2

8
.

Plugging this into the z-integral we obtain 1 points

1
8

∫ z=3/4

z=0
(1− (z − 1)2)dz =

1
8
[z − (z − 1)3

3
]z=3/4
z=0 =

1
8

(
3
4

+
1

192
− 1

3

)
=

27
512

.

Finally, the integral in θ is: 2 points
∫ θ=2π

θ=0
dθ = [θ]θ=2π

θ=0 = 2π.
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Therefore 1 points
V = π

27
256

≈ 0.33134.

1 points

2. (a)[Not seen] First of all we need to find the points at which the first order partial
derivatives vanish. These derivatives are 1 point

fx = (1 + (x− y)y)exy, fy = (−1 + (x− y)x)exy.

Then
fx = 0 ⇔ 1 + (x− y)y = 0,

and
fy = 0 ⇔ −1 + (x− y)x = 0.

Subtracting the two equations from each other we find

2 + (x− y)(y − x) = 0 ⇒ 2− (x− y)2 = 0 ⇒ x− y = ±
√

2.

2 points

Substituting x = y ±√2 in equation fx = 0 we obtain

1±
√

2y = 0 ⇒ y = ∓1/
√

2.

Therefore we get two stationary points:

(x, y) = (− 1√
2

+
√

2,− 1√
2
) = (

1√
2
,− 1√

2
),

and
(x, y) = (

1√
2
−
√

2,
1√
2
) = (− 1√

2
,

1√
2
).

2 points

To investigate what type of stationary points this points are, we have to look at the
second order partial derivatives: 2 points

fxx = (2y + (x− y) y2)exy, fyy = (−2x + (x− y)x2)exy,

fxy = fyx = (x− y)(2 + xy)exy.

Calling A = fxx, B = fxy and C = fyy, we find:

i) For the point (1/
√

2,−1/
√

2) we have

A = − 1√
2e

, B =
3√
2e

, C = − 1√
2e

.

Then
AC −B2 = −4

e
< 0,

therefore this point is a saddle point. 1.5 points
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ii) For the point (−1/
√

2, 1/
√

2) we have

A =
1√
2e

, B = − 3√
2e

, C =
1√
2e

.

Then
AC −B2 = −4

e
< 0,

therefore this point is also a saddle point. 1.5 points

(b) [A very similar problem was done as coursework ] The function that we want to
maximize and minimize is the distance between a point (x, y) on the sphere and the
point (0, 0). The distance function is

d(x, y) =
√

x2 + y2.

Since the derivatives of this function are rather complicated, it is better to consider
the square of the distance instead. This is correct because both the distance and its
square will be maximal or minimal at the same points! So, let us consider the function

f(x, y) = x2 + y2.

The constrain in this case is given by the fact that (x, y) must lie on the circle:

Φ(x, y) = (x− 2)2 + (y + 1)2 − 4 = 0.

1 point

According to the method of Lagrange multipliers, we need to solve the following set of
equations:

fx + λΦx = 0 ⇒ 2x + λ2(x− 2) = 0 (0.1)
fy + λΦy = 0 ⇒ 2y + λ2(y + 1) = 0 (0.2)

(x− 2)2 + (y + 1)2 − 4 = 0 (0.3)

2 points

The two first equations can be re-written as:

x

x− 2
=

y

y + 1
= −λ,

by solving each equation for λ. This implies that:

x(y + 1) = y(x− 2) ⇒ xy + x = yx− 2y ⇒ x = −2y.

1 point

Substituting this result, into equation (0.3) we find an equation for y which we can
solve:

(−2y−2)2+(y+1)2−4 = 0 ⇒ 5(y+1)2−4 = 0 ⇒ y+1 = ±
√

4
5

⇒ y = −1± 2√
5
.
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1.5 points

We therefore have two solutions for y which correspond to two solutions for x (since
x = −2y) given by x = 2∓ 4√

5
. Therefore we find two points on the sphere which are

at maximal or minimal distance from (0, 0) and they are:

(x, y) =
(

2− 4√
5
,−1 +

2√
5

)
and

(
2 +

4√
5
,−1− 2√

5

)
.

1.5 points

We still need to find the corresponding values of the Lagrange multiplier. For this we
can just substitute the two different values of x for each point onto equation (0.1).
This gives:

−λ =
x

x− 2
=

2∓ 4√
5

∓ 4√
5

= ∓
√

5
2

+ 1,

1 point

where the minus sign corresponds to the first point and the plus sign to the second
point.

Now the only thing left to do is to find out which one of these points is a t maximum
distance and which one at minimum distance. For this we just need to substitute the
two solutions into the function d(x, y) that we found above. We find:

d

(
2− 4√

5
,−1 +

2√
5

)
=

√(
2− 4√

5

)2

+
(
−1 +

2√
5

)2

=
√

9− 4
√

5 = 0.236068...

and

d

(
2 +

4√
5
,−1− 2√

5

)
=

√(
2 +

4√
5

)2

+
(
−1− 2√

5

)2

=
√

9 + 4
√

5 = 4.23607...

Clearly the distance is largest for the second point and therefore this provides the 2 points
maximum whereas the first point is the one at minimum distance. The figure below
shows the location of the points.
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From this picture we actually see that the two points are connected by a line that
includes the centre of the sphere and the origin of coordinates and that the largest
distance must be equal to the shortest distance plus the diameter of the sphere (4),
which is precisely what we got!

3. (a) [Not seen] Using the chain rule we have

∂f

∂u
=

∂f

∂x

∂x

∂u
+

∂f

∂y

∂y

∂u
= (v + 3u2)fx + vfy,

and 2 points

∂f

∂v
=

∂f

∂x

∂x

∂v
+

∂f

∂y

∂y

∂v
= ufx + (u + 3v2)fy.

The 2nd order partial derivatives can be obtained by using once more the chain rule: 2 points

∂2f

∂u2
=

∂

∂u
((v + 3u2)fx + vfy) = 6ufx + (v + 3u2)fxu + vfyu

= 6ufx + (v + 3u2)((v + 3u2)fxx + vfxy) + v((v + 3u2)fxy + vfyy)
= 6ufx + (v + 3u2)2fxx + 2v(v + 3u2)fxy + v2fyy,

and 3 points

∂2f

∂v2
=

∂

∂v
(ufx + (u + 3v2)fy) = ufxv + 6vfy + (u + 3v2)fyv

= u(ufxx + (u + 3v2)fxy) + 6vfy + (u + 3v2)(ufxy + (u + 3v2)fyy)
= u2fxx + 2u(u + 3v2)fxy + 6vfy + (u + 3v2)2fyy.

3 points

(b) [Not seen] We saw in the lecture that for an implicit function defined by an equation
of the form:

Φ(x, y, z) = 3yz2 − e4xz − 3y2 + 4 = 0,

1 point

The derivatives may be computed as:

∂z

∂x
= −Φx

Φz
=

4ze4zx

6yz − 4xe4zx
=

2ze4zx

3yz − 2xe4zx
,

2 points
∂z

∂x
= −Φy

Φz
= − 3z2 − 6ye4zx

6yz − 4xe4zx
.

2 points

At the point (1, 0) we have

Φ(1, 0, z) = −e4z + 4 = 0, z =
1
4

ln 4 = ln
√

2 ≈ 0.346574

2 points
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Therefore the value of the derivatives is:

zx(1, 0) =
8 ln

√
2

−8
= − ln

√
2 ≈ −0.346574

1.5 points

zy(1, 0) = −3(ln
√

2)2

−8
=

3
8
(ln
√

2)2 ≈ 0.0450425

1.5 points

4. [Not seen] To obtain the general solution of the homogeneous equation we try solutions
of the type y = cemx. Substituting this solution into the equation we obtain the
condition

m2 − 9 = 0 ⇒ m = ±3.

This means that the general solution of the homogeneous equation is of the form

y = c1e
3x + c2e

−3x,

therefore we identify
u1(x) = e3x, u2(x) = e−3x.

2 points

For the second part of the problem we will need the Wronskian of these solutions which
is

W (x) =
∣∣∣∣

u1(x) u2(x)
u′1(x) u′2(x)

∣∣∣∣ =
∣∣∣∣

e2x e−2x

3e2x −3e−2x

∣∣∣∣ = −3− 3 = −6.

2 points

The method of variation of parameters tells us that a particular solution of the inho-
mogeneous equation is of the form

y = v1(x)u1(x) + v2(x)u2(x),

with
v1(x) = −

∫
u2(x)

R(x)
W (x)

dx and v2(x) =
∫

u1(x)
R(x)
W (x)

dx.

3 points
In our case

R(x) =
6

sinh(3x)
, W (x) = −6,

therefore, integrating by parts twice we obtain

v1(x) =
∫

e−3x

sinh(3x)
dx = 2

∫
e−3x

e3x − e−3x
dx = 2

∫
e−9x

1− e−9x
dx =

2
9

ln |1− e−9x|
5 points

v2(x) = −
∫

e3x

sinh(3x)
dx = −2

∫
e3x

e3x − e−3x
dx = −2

∫
e9x

e9x − 1
dx = −2

9
ln |e9x − 1|.
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Hence the general solution of the inhomogeneous equation is 5 points

y = c1e
3x + c2e

−3x +
2e3x

9
ln |1− e−9x| − 2e−3x

9
ln |e9x − 1|.

with c1, c2 being arbitrary constants. 3 points
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