CALCULUS 2006: EXAM SOLUTIONS

1. (a) The integration region is the lower triangle in the picture
Yy y =2x
y=2
R
X
x=1

From the picture it is easy to see that changing the order of integration we obtain

=1 y=2x 5
1= / dx / e” dy.
=0 y=0

The integral in y gives
y=2z 2z
/ e“’zdy = [ye‘”z} = 22",
y=0 0
Plugging this result into the second integral we obtain
e=1 2 271
I:/ 23:ezda::[ez} =e—1.
=0 0
(b) The Jacobian of the change of coordinates is simply
or 00 0z
cosf —rsinf 0
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or 00 0z
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or 00 0z
Therefore, the element of volume which we need to use for the integral is

dedydz = |J|drdfdz =rdrdfdz.

To compute the integral we have first to express the integrand in terms of the new
variables, that is
(x2 + y2)3 — (T2)3 _ ,r_6.



The next step is to describe the region of integration in terms of the new variables.
The integration region for this problem is very easy to sketch. We have a radius 1
circular cylinder centered at the origin extending between the z = 1 and z = 5 planes.
This looks more or less like in the picture below

In cylindrical coordinates, the integration region is simply
R={(r,z,0): 0<r<1, 1<z<5 0<60<2r},

and the integral we want to compute is therefore

r=1 0=2m 2=5
V= / rTdr / do / dz.
r=0 6=0 z=1

The various integrals can be carried out separately and give

r=1 7n8 1 0=2m z=5
/ rldr = {} = -, / df = 2, / dz=5—-1=4.
r=0 8 0 8 6=0 z=1

Therefore
V =(2n)(1/8)(4) = .

. (a) First of all we need to find the points at which the first order partial derivatives
vanish. These derivatives are

fo =4y —42® =0, fy =4z —4y* =0

Then



and
fy=0 & =y

Inserting the first condition into the second one we obtain

z=2"=2=1 or 2=0= z=1,0,—1,

which gives us 3 candidates to be stationary points, that is the points (1, 1), (0,0) and
(—1,—1) at which both f; and f, vanish. To investigate what type of stationary points
this points are, we have to look at the second order partial derivatives:

foa = —122%,  fy, = —124%

foy = fya = 4.
Calling A = fzr, B = fzy and C = fy,, we find:
i) For the point (1,1) we have

AC — B? 144 — 16 = 128 > 0,
A = —-12<0,

therefore this point is a maximum.

ii) For the point (0,0) we have
AC —B*=-16 <0,

therefore this point is a saddle point.

iii) For the point (—1,—1) we have

AC —B* = 144 —-16 =128 > 0,
A = —-12<0,

therefore this point is also a maximum.

(b) The Taylor expansion of a function of two variables f(x,y) around a point (zg, yo)

up to second order terms is given by

flzyy) = flzo,y0) + fa(z0,y0)(x — 20) + fy(20,Y0) (¥ — Y0)

+ %fm(ﬂfo,yo)(x —x0)% + %fyy(an Y0) (Y — ¥0)* + fay (20, Y0) (2 — 20) (Y — Y0),

assuming fry = fyz. In our case (zg,y0) = (0,1) and

fo = Atx+ye™, fy=0-z-y)e"Y, fro=Q2+z+y)e
fyy = (_2+$+y)6x7y7 fxy = fyw = _(‘T"i_y)exiy'
Therefore



f(0,1) = 1/e, f.(0,1)=2/e, f,(0,1)=0, fu(0,1) =3/e,
fyy(oal) = _1/63 fﬂﬁy(oal):fym(ovl):_l/ea

So, the Taylor expansion is
1
flz,y) = %(2 44z 4+ 322 — (y — 1)2 = 22(y — 1)),

and
f0.1,1.1) = %(2 +0.443(0.1)% = (0.1)2 = 2(0.1)%) = %_

The exact value of the function at this point is
1.2
£(0.1,1.1) = ==,
e

therefore the Taylor approximation is in fact exact at this point!
. (a) Using the chain rule we have

0z 0z 0x 0z 0y

0 %8u+87y@:ufx+vfy’

and

of _ 0f0x  0fdy _

" aroe Tagow Vet

(b) From (a) we can obtain the 2nd order partial derivatives by using once more the
chain rule we have

0% f 0 Ofe af.
= fx + U(ufxm + Ufym) + 'U(ufzy + Ufyy) = fa: + szxx + Unyy + QU'Ufmy,
and
% f o) Ofs | Of
902 = gy et uf) = —fe vy n et

= —fo—v(—Vfpe +ufyz) +u(—vfy +ufy)=—fr+ V2 fow + u2fyy — 22U fry.

Substracting the two formulae we trivially see that

0? 0?
O O — 2 ) fae + F)

. To obtain the general solution of the homogeneous equation we try solutions of the
type y = ce™*. Substituting this solution into the equation we obtain the condition

m?—4m+5=0=m=2=+i.



This means that the general solution of the homogeneous equation is of the form
y = c1e** cosz + cpe® sin

therefore we identify

2 2

ui(z) = e“ cosz, ug(x) = e““sinz.

For the second part of the problem we will need the Wronskian of these solutions which

1S

e2® cos 2 gin ¢

2% cosx — €T sinx  2e2*sinz + e2% cosx
4 4x

ui(z) us(z) ':
ui(z) up()

= " cosz(2sinz + cosz) —e

“sinxz(2cosx —sinx) =e

Therefore the Wronskian is indeed nowhere zero.

The method of variation of parameters tells us that a particular solution of the inho-
mogeneous equation is of the form

y = vi(@)ur(x) + v2(z)uz(z),

with

In our case

therefore

cos T

vo(z) = dx = In(sin x).
2(2) / sin x ( )

Hence the general solution of the inhomogeneous equation is

y = e* (¢ cosz + cpsinz — x cos z + In(sin ) sin ),

with ¢1, co being arbitrary constants.



