
CALCULUS 2006: EXAM SOLUTIONS

1. (a) The integration region is the lower triangle in the picture 3

From the picture it is easy to see that changing the order of integration we obtain 3

I =
∫ x=1

x=0
dx

∫ y=2x

y=0
ex2

dy.

The integral in y gives 2
∫ y=2x

y=0
ex2

dy =
[
yex2

]2x

0
= 2xex2

.

Plugging this result into the second integral we obtain 2

I =
∫ x=1

x=0
2xex2

dx =
[
ex2

]1

0
= e− 1.

(b) The Jacobian of the change of coordinates is simply 2

J =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x

∂r

∂x

∂θ

∂x

∂z

∂y

∂r

∂y

∂θ

∂y

∂z

∂z

∂r

∂z

∂θ

∂z

∂z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣

cos θ −r sin θ 0
sin θ r cos θ 0

0 0 1

∣∣∣∣∣∣
= r cos2 θ + r sin2 θ = r.

Therefore, the element of volume which we need to use for the integral is 1

dx dy dz = |J | dr dθ dz = r dr dθ dz.

To compute the integral we have first to express the integrand in terms of the new
variables, that is 1

(x2 + y2)3 = (r2)3 = r6.
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The next step is to describe the region of integration in terms of the new variables.
The integration region for this problem is very easy to sketch. We have a radius 1
circular cylinder centered at the origin extending between the z = 1 and z = 5 planes.
This looks more or less like in the picture below

In cylindrical coordinates, the integration region is simply 2

R = {(r, z, θ) : 0 ≤ r ≤ 1, 1 ≤ z ≤ 5, 0 ≤ θ ≤ 2π},

and the integral we want to compute is therefore 1

V =
∫ r=1

r=0
r7dr

∫ θ=2π

θ=0
dθ

∫ z=5

z=1
dz.

The various integrals can be carried out separately and give 2

∫ r=1

r=0
r7dr =

[
r8

8

]1

0

=
1
8
,

∫ θ=2π

θ=0
dθ = 2π,

∫ z=5

z=1
dz = 5− 1 = 4.

Therefore 1
V = (2π)(1/8)(4) = π.

2. (a) First of all we need to find the points at which the first order partial derivatives
vanish. These derivatives are 1

fx = 4y − 4x3 = 0, fy = 4x− 4y3 = 0

Then 1
fx = 0 ⇔ y = x3,
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and 1
fy = 0 ⇔ x = y3.

Inserting the first condition into the second one we obtain

x = x9 ⇒ x8 = 1 or x = 0 ⇒ x = 1, 0,−1,

which gives us 3 candidates to be stationary points, that is the points (1, 1), (0, 0) and
(−1,−1) at which both fx and fy vanish. To investigate what type of stationary points
this points are, we have to look at the second order partial derivatives: 1

fxx = −12x2, fyy = −12y2,

fxy = fyx = 4.

Calling A = fxx, B = fxy and C = fyy, we find:

i) For the point (1, 1) we have 2

AC −B2 = 144− 16 = 128 > 0,

A = −12 < 0,

therefore this point is a maximum.

ii) For the point (0, 0) we have 2

AC −B2 = −16 < 0,

therefore this point is a saddle point.

iii) For the point (−1,−1) we have 2

AC −B2 = 144− 16 = 128 > 0,

A = −12 < 0,

therefore this point is also a maximum.

(b) The Taylor expansion of a function of two variables f(x, y) around a point (x0, y0)
up to second order terms is given by 2

f(x, y) = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)

+
1
2
fxx(x0, y0)(x− x0)2 +

1
2
fyy(x0, y0)(y − y0)2 + fxy(x0, y0)(x− x0)(y − y0),

assuming fxy = fyx. In our case (x0, y0) = (0, 1) and 2

fx = (1 + x + y)ex−y, fy = (1− x− y)ex−y, fxx = (2 + x + y)ex−y,

fyy = (−2 + x + y)ex−y, fxy = fyx = −(x + y)ex−y.

Therefore 2

3



f(0, 1) = 1/e, fx(0, 1) = 2/e, fy(0, 1) = 0, fxx(0, 1) = 3/e,

fyy(0, 1) = −1/e, fxy(0, 1) = fyx(0, 1) = −1/e,

So, the Taylor expansion is 2

f(x, y) =
1
2e

(2 + 4x + 3x2 − (y − 1)2 − 2x(y − 1)),

and 2
f(0.1, 1.1) =

1
2e

(2 + 0.4 + 3(0.1)2 − (0.1)2 − 2(0.1)2) =
2.4
2e

.

The exact value of the function at this point is

f(0.1, 1.1) =
1.2
e

.

therefore the Taylor approximation is in fact exact at this point!

3. (a) Using the chain rule we have 4

∂z

∂u
=

∂z

∂x

∂x

∂u
+

∂z

∂y

∂y

∂u
= ufx + vfy,

and 4

∂f

∂v
=

∂f

∂x

∂x

∂v
+

∂f

∂y

∂y

∂v
= −vfx + ufy.

(b) From (a) we can obtain the 2nd order partial derivatives by using once more the
chain rule we have 5

∂2f

∂u2
=

∂

∂u
(ufx + vfy) = fx + u

∂fx

∂u
+ v

∂fy

∂u
= fx + u(ufxx + vfyx) + v(ufxy + vfyy) = fx + u2fxx + v2fyy + 2uvfxy,

and 5

∂2f

∂v2
=

∂

∂v
(−vfx + ufy) = −fx − v

∂fx

∂v
+ u

∂fy

∂v
= −fx − v(−vfxx + ufyx) + u(−vfxy + ufyy) = −fx + v2fxx + u2fyy − 2uvfxy.

Substracting the two formulae we trivially see that 2

∂2f

∂u2
+

∂2f

∂v2
= (u2 + v2)(fxx + fyy).

4. To obtain the general solution of the homogeneous equation we try solutions of the
type y = cemx. Substituting this solution into the equation we obtain the condition 2

m2 − 4m + 5 = 0 ⇒ m = 2± i.
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This means that the general solution of the homogeneous equation is of the form 2

y = c1e
2x cosx + c2e

2x sinx,

therefore we identify

u1(x) = e2x cosx, u2(x) = e2x sinx.

For the second part of the problem we will need the Wronskian of these solutions which
is 3

W (x) =
∣∣∣∣

u1(x) u2(x)
u′1(x) u′2(x)

∣∣∣∣ =
∣∣∣∣

e2x cosx e2x sinx
2e2x cosx− e2x sinx 2e2x sinx + e2x cosx

∣∣∣∣
= e4x cosx(2 sinx + cos x)− e4x sinx(2 cosx− sinx) = e4x.

Therefore the Wronskian is indeed nowhere zero.

The method of variation of parameters tells us that a particular solution of the inho-
mogeneous equation is of the form 3

y = v1(x)u1(x) + v2(x)u2(x),

with
v1(x) = −

∫
u2(x)

R(x)
W (x)

dx and v2(x) =
∫

u1(x)
R(x)
W (x)

dx.

In our case

R(x) =
e2x

sinx
, W (x) = e4x,

therefore 4

v1(x) = −
∫

dx = −x,

4

v2(x) =
∫

cosx

sinx
dx = ln(sinx).

Hence the general solution of the inhomogeneous equation is 2

y = e2x(c1 cosx + c2 sinx− x cosx + ln(sinx) sin x),

with c1, c2 being arbitrary constants.
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