Section A

Answer all questions from this section. Each question carries 8 marks.

1. Evaluate each of the following limits:

(i)
$$\lim_{x \to 0} \left(\frac{\sin 2x}{\sin 3x} \right);$$

(ii)
$$\lim_{x \to 0} \left(\frac{e^x - \cos x}{\sin \frac{1}{2}x} \right)$$

2. Solve for x the equation

 $4\sinh x - \cosh x = 1$

giving your solution in logarithmic form.

3. Find the general solution of the differential equation

$$y\left(1+4x^2\right)\frac{dy}{dx} = 1+y^2.$$

4. By using the substitution $x = \sinh u$ show that

$$\int_0^{\pi} \sqrt{1+x^2} dx = \frac{1}{2} \left(ar \sinh \pi + \pi \sqrt{1+\pi^2} \right).$$

- 5. Show that the length of the curve $y = \frac{1}{2} \ln \sec 2x$ between the points where $x = -\frac{\pi}{12}$ and $x = \frac{\pi}{12}$ is $\frac{1}{2} \ln 3$.
- 6. (a) Find the n^{th} derivative with respect to x of

$$\ln\left(1+2x\right).$$

(b) Use Leibnitz's Theorem to find the 5^{th} derivative with respect to \boldsymbol{x} of

 $x^3 \sin x$.

Turn over . . .

Section B

Answer two questions from this section. Each question carries 26 marks.

7. The function f of two variables is given by

$$f(x,y) = 3x^2y - 2xy + 2y^2 - y + 2.$$

- (i) Find the first order and second order partial derivatives of f.
- (ii) Find the Taylor polynomial of second order for the function f at the point where x = 1, y = 3.
- (iii) Find all the stationary points of the function.
- (iv) Classify the stationary points.
- 8. (a) The function f is defined as

$$f\left(x\right) = xe^{3x}.$$

Use the Principle of Mathematical Induction to prove that $f^{(n)}(x)$, the n^{th} derivative of f, is given by

$$f^{(n)}x = 3^{n-1} \left(3x+n\right)e^{3x}$$

for all positive integers n.

(b) Given that

$$I_n = \int_0^1 x^n e^x \, dx,$$

show that, for $n \ge 1$,

$$I_n = e - nI_{n-1}$$

Hence evaluate I_5 , leaving your answer in terms of e.

Turn over . . .

9. (a) Find the general solution of the differential equation

$$x\frac{dy}{dx} - 2y = x^3 \ln x, \qquad x > 0.$$

(b) Find the solution of the differential equation

$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 5y = 20 - 26\sin 3x$$

for which y = 1 and $\frac{dy}{dx} = 0$ when x = 0.

Internal Examiner:	Mrs J. Malcolm
External Examiners:	Professor S.A. Robertson
	Professor D.J. Needham